我们已经知道,Browser-Use开源。企业完全可以将其和私有化部署的AI大模型结合起来,完成WEB页面的自动化测试执行,整个过程还是挺明确的:
基于Browser-use与DOM解析的Web自动化测试设计方案(非视觉模式)
一、整体架构设计(参考网页2分层架构)
采用 四层混合驱动框架 结合Browser-use特性:
-
测试用例层
- 使用自然语言描述测试场景(如网页3的指令式语法)
- 示例结构:
python
test_case = """ 1. 访问用户管理系统 2. 验证默认显示用户列表 3. 点击【新增用户】按钮 4. 输入必填字段:姓名=测试员,角色=QA 5. 验证提交后用户列表新增记录 """
-
业务逻辑层
- 封装原子操作(如
login()
、create_user()
) - 通过Browser-use的
@action
装饰器注册自定义验证点(参考网页3)
- 封装原子操作(如
-
页面操作层
- DOM元素智能定位策略:
python
class ElementLocator: def get_clickables(self): # 筛选可操作元素(按钮/输入框/链接) return self.dom.xpath('//button | //input[@type="submit"] | //a') def filter_by_visibility(self, elements): # 过滤隐藏元素(display:none / visibility:hidden) return [e for e in elements if e.get('style') not in hidden_styles]
- DOM元素智能定位策略:
-
数据服务层
- 测试数据管理(JSON/YAML)
- 动态参数注入:
python
@data_driver(file="testdata/login_cases.json") def test_login(username, password): agent.run(f"登录系统,用户名={username},密码={password}")
二、核心实现方案
▍元素定位与状态验证
-
动态元素捕获(解决网页6的StaleElement问题)
- 基于DOM树版本号的元素缓存机制:
python
dom_version = agent.get_dom_hash() # 计算DOM结构哈希值 if cached_version != dom_version: reload_elements() # 重新加载元素索引
- 智能等待策略(改进网页8的显式等待):
python
def wait_for_element(selector, timeout=10): start_time = time.time() while time.time() - start_time < timeout: if agent.dom.find(selector): return True time.sleep(0.5) raise TimeoutError(f"元素{selector}未找到")
- 基于DOM树版本号的元素缓存机制:
-
复合操作验证
- 操作链验证点设计:
python
def verify_operation_steps(expected_steps): executed = agent.get_action_log() for step in expected_steps: if step not in executed: return VerificationFail(f"未执行步骤:{step}")
- 操作链验证点设计:
▍异常处理机制
-
自动修复策略
- 元素失效时的三级恢复机制:
python
try: agent.click("#submit_btn") except ElementNotFound: self.fallback_click_by_xpath('//button[text()="提交"]') self.fallback_js_click('document.querySelector(".submit")')
- 元素失效时的三级恢复机制:
-
错误场景捕获
- 集成网页6的防御性编程:
python
def safe_execute(action): try: return action() except Exception as e: agent.capture_dom_snapshot() # 保存当前DOM快照 log_error(f"操作失败时的DOM结构:{agent.current_dom}") raise
- 集成网页6的防御性编程:
三、测试流程设计
mermaid
graph TD
A[启动测试] --> B{解析自然语言用例}
B --> C[DOM树加载]
C --> D[元素索引构建]
D --> E[执行原子操作]
E --> F{验证预期结果}
F -->|通过| G[生成测试报告]
F -->|失败| H[触发自愈机制]
H --> E
四、关键技术实现
-
DOM差异分析
- 对比操作前后的DOM变化,识别未预期改动:
python
def detect_dom_changes(): before = agent.get_dom_tree() perform_action() after = agent.get_dom_tree() return diff(before, after)
- 对比操作前后的DOM变化,识别未预期改动:
-
元素优先级策略
- 根据可见性/位置/类型计算操作权重:
python
class ElementPriority: WEIGHTS = { 'button': 0.9, 'input': 0.7, 'visible': 1.2, 'center_area': 1.5 }
- 根据可见性/位置/类型计算操作权重:
-
测试覆盖率计算
- 基于DOM节点的操作覆盖率:
python
coverage = len(operated_elements) / total_clickables
- 基于DOM节点的操作覆盖率:
五、与Browser-use的深度集成方案
-
扩展指令集
python
@agent.register_action('verify_text') def verify_text_in_dom(text): if text not in agent.dom.text_content(): raise AssertionError(f"文本'{text}'未找到") @agent.register_action('scroll_to') def scroll_to_element(selector): agent.js_execute(f"document.querySelector('{selector}').scrollIntoView()")
-
测试报告生成
- 包含DOM操作轨迹的HTML报告:
html
<div class="test-step"> <span>操作:点击登录按钮</span> <pre>点击元素:<button id="login_btn" class="primary">登录</button></pre> <img src="dom_snapshot_001.png"> </div>
- 包含DOM操作轨迹的HTML报告:
六、对抗性测试设计
-
DOM注入攻击模拟
python
def test_xss_vulnerability(): agent.input_text('#comment_box', '<script>alert(1)</script>') agent.click('#submit_btn') assert 'alert' not in agent.dom.html # 验证XSS过滤
-
极限负载测试
python
def stress_test(): for i in range(100): agent.run(f"创建测试用户{i},邮箱=test{i}@example.com") assert agent.dom.contains(f'用户{i}')
该方案通过深度结合Browser-use的DOM解析能力,实现了:
- 基于语义的操作指令转换
- 动态DOM结构的自适应测试
- 可追溯的测试验证链条
- 智能化的异常恢复机制
如需进一步探讨具体模块实现细节,可继续聚焦以下方向:
- DOM变化监测算法的优化方案
- 测试用例与DOM结构的版本映射策略
- 多页面场景的上下文保持机制