37、指纹分类器与生物特征识别系统的融合技术

指纹分类器与生物特征识别系统的融合技术

1. 指纹分类器概述

指纹分类在生物识别领域中至关重要,主要分为连续分类和排他分类两种方式。

1.1 连续分类

在连续分类中,每个指纹由多维空间中的特征向量来表征。假设相似的指纹会被映射到相近的点,那么检索问题就可以当作最近邻搜索来处理。这种方法能够避免“模糊”指纹的排他归属问题,还能通过调整所考虑的邻域大小来调节系统的可靠性。

1.2 排他分类

排他分类采用两种简单的准则:
- 最小距离分类器(MKL - MIN) :指纹被分配到满足特定条件的类别 ( c^ ) ,公式为 ( c^ = \arg \min_{c \in {1, \cdots, n}} d_{FS}(x, c) ) 。
- K 近邻分类器(MKL - KNN) :指纹根据 k - NN 规则进行分类。

为了提供拒绝选项,上述分类器会为每个指纹关联一个 [0, 1] 范围内的置信值:
- MKL - MIN :置信度是两个最小距离 ( d_1 ) 和 ( d_2 ) 的归一化差值,即 ( conf = \frac{d_2 - d_1}{d_2 + d_1} ) 。
- MKL - KNN :置信度是 k 个最近邻中两个最频繁类别的出现次数 ( n_1 ) 和 ( n_2 ) 的归一化差值,即 ( conf = \frac{n_2 - n_1}{n_2 + n_1} ) 。

2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值