指纹分类器与生物特征识别系统的融合技术
1. 指纹分类器概述
指纹分类在生物识别领域中至关重要,主要分为连续分类和排他分类两种方式。
1.1 连续分类
在连续分类中,每个指纹由多维空间中的特征向量来表征。假设相似的指纹会被映射到相近的点,那么检索问题就可以当作最近邻搜索来处理。这种方法能够避免“模糊”指纹的排他归属问题,还能通过调整所考虑的邻域大小来调节系统的可靠性。
1.2 排他分类
排他分类采用两种简单的准则:
- 最小距离分类器(MKL - MIN) :指纹被分配到满足特定条件的类别 ( c^ ) ,公式为 ( c^ = \arg \min_{c \in {1, \cdots, n}} d_{FS}(x, c) ) 。
- K 近邻分类器(MKL - KNN) :指纹根据 k - NN 规则进行分类。
为了提供拒绝选项,上述分类器会为每个指纹关联一个 [0, 1] 范围内的置信值:
- MKL - MIN :置信度是两个最小距离 ( d_1 ) 和 ( d_2 ) 的归一化差值,即 ( conf = \frac{d_2 - d_1}{d_2 + d_1} ) 。
- MKL - KNN :置信度是 k 个最近邻中两个最频繁类别的出现次数 ( n_1 ) 和 ( n_2 ) 的归一化差值,即 ( conf = \frac{n_2 - n_1}{n_2 + n_1} ) 。