统计传感器校准与模块化神经模糊网络在生物识别和乐器分类中的应用
在当今科技发展中,生物识别和乐器分类是两个备受关注的领域。生物识别通过融合多种传感器数据提高识别准确性,而乐器分类则借助模块化神经模糊网络实现高效分类。下面将详细介绍这两个方面的技术原理和应用。
1. 生物识别中的传感器融合与校准
在生物识别系统里,传感器融合是提升分类性能的关键。其目的在于确定给定生物特征数据样本所属的类别。通过结合多个可独立测量且会产生独立误差的生物特征线索,能实现比单个传感器更优的分类效果。
1.1 特征提取与分类
以语音识别为例,先使用长度为 22 毫秒、重叠 11 毫秒的汉明窗对语音信号进行处理。得到的每个长度为 N = 1924 样本的窗口 $w_i$ 被用于基于傅里叶的倒谱计算。傅里叶倒谱 $c_i$ 的定义如下:
- $c_i(0) = \frac{1}{N} \sum_{\nu = 0}^{N/2 - 1} \log |W_i(\nu)|$
- $c_i(q) = \frac{1}{N} \sum_{\nu = 0}^{N/2 - 1} \log |W_i(\nu)| \cos \frac{\pi q(2\nu + 1)}{N}, q = 1, \cdots, N/2$
其中,$|W_i|$ 是从第 $i$ 个语音窗口 $w_i$ 计算得到的功率谱,$W_i = DFT {w_i}$。特征向量 $c_i$ 的集合用于分类,采用矢量量化器(VQ)方法。在训练过程中,为每个人构建一个包含 2 个码矢量的码本。通过计算从语音代码字获得的特征向量样本到每个人的码本的欧几里得距离来得到分数。