语法引导句子识别的分类器组合与形状匹配提取技术
在模式识别和计算机视觉领域,分类器组合和形状匹配提取是两个重要的研究方向。下面将详细介绍语法引导句子识别的分类器组合方法以及基于图 - 地分类器阵列的形状匹配提取技术。
语法引导句子识别的分类器组合
在语法引导的句子识别中,多个分类器的组合面临着独特的挑战。以往的多分类器组合工作主要关注分类决策为原子实体的任务,而语法引导的句子识别有其特殊性,简单的组合规则(如 Borda 计数)不再适用。因此,提出了一种新的分类器组合方法,该方法主要包括三个组件:类别集缩减、不一致性定位和解决。
不一致性定位与分析
对于给定的两个候选句子对,通过计算 LOI(TS1, TS2) 来定位不一致性。例如,对于特定的句子对,经过计算得到 LOI(TS1, TS1) = {(T15, T25)},这表明该例子中的单一不一致性源于非终结符 DIGIT 的两种不同解释。
不一致性解决
存在一种情况无法解决不一致性,即当 LOI(TS1, TS2) 仅包含一个条目 (TS1, TS2) 时,不一致性出现在初始非终结符符号 S 处,此时分类器组合算法会立即以拒绝结束。
在其他情况下,会独立解决 LOI(TS1, TS2) 中检测到的所有不一致性。具体步骤如下:
1. 特征提取与预处理 :从原始输入信号中提取子部分 P1 和 P2,并计算它们的特征。可以对 P1 和 P2 进行局部自适应的预处理,例如在手写文本阅读中进行局部倾斜校正。
2. 语法调整 :将分类器使用的语法中的初始非终