📝 面试求职: 「面试试题小程序」 ,内容涵盖 测试基础、Linux操作系统、MySQL数据库、Web功能测试、接口测试、APPium移动端测试、Python知识、Selenium自动化测试相关、性能测试、性能测试、计算机网络知识、Jmeter、HR面试,命中率杠杠的。(大家刷起来…)
📝 职场经验干货:
本期我们就从“车载测试领域的智能驾驶功能测试岗位”入手,从“岗位解析、技能储备、求职策略”三方面带领大家全面了解!
这两天想必大家刷到了这样一条新闻:“吉利李书福:几乎所有新势力都来吉利挖人,没有吉利的人才他们造不出车”(详情如下)
那我们就以吉利汽车的“智能驾驶功能测试”职位为代表,重点分析该职位的招聘要求。
01 职位解析
吉利汽车在某招聘网站发布的智能驾驶功能测试岗位详情如下:
智能驾驶功能测试11-22K
岗位职责:
-
负责自动驾驶行车功能、高阶泊车功能的测试用例编写与维护,根据项目计划制定测试计划和提报测试需求;
-
负责编制HPA-max、ICCmax、NOA、D2D等高阶智驾功能测试用例和实车测试方案;
-
负责编制基础L2功能 如ACC,HWA,ALCA,AEB,FCTA,RCTA,DOW等功能测试用例及实车功能测试验收;
-
负责数据闭环功能验收;
-
负责编制实车验收的点检清单、验收报告模板及测试报告;
-
熟悉法规测试项,负责法规测试项的验证工作;
-
负责推进测试问题的优化,规控问题优化过程,完成问题闭环;
-
负责管理外包人员执行develop和bugfix版本的实车验证,优化测试流程。
任职要求:
-
全日制本科及以上学历,车辆工程、机械、电气自动化、通信等相关专业;
-
具备5年以上智能驾驶相关工作经验,有2个以上完整的项目开发经验,能力优秀者可适当放宽;
-
熟练使用CANoe、CANape、TOSUN等总线设备;
-
了解Linux系统,熟悉Linux命令,了解智驾关联系统;有C2及以上驾照,具备丰富驾驶经验;
-
具备良好的沟通能力、团对合作精神、用户思维,责任心强;
-
有编写自动化测试脚本、编写Capl脚本、掌握Python语言经验优先;
-
需要熟悉智能驾驶功能及功能逻辑,并具备提出逻辑优化的能力;
-
具备整车属性的主观评价经验优先 ;
职位深度解析如下:
1、测试设计与执行(核心)
-
用例开发:覆盖从L2(ACC、AEB)到高阶功能(NOA、自动泊车)的全场景测试,需结合功能逻辑、用户场景及法规要求。
-
实车验证:设计实车测试方案,包括极端工况模拟(如AEB紧急制动、ALCA弯道保持),需具备道路风险预判能力。
-
数据闭环验收:验证数据采集、算法迭代的有效性,连接测试与算法优化的闭环链条。
2、流程管理与合规性
-
法规测试:熟悉ISO 26262、C-NCAP等标准,确保功能符合国内外法规(如欧盟GSR)。
-
外包管理:协调外包团队执行测试任务,优化资源分配与流程效率,降低人力成本。
3、问题驱动优化
-
主导Bug生命周期管理,从问题复现、根因分析到推动开发修复,需具备跨部门协作与技术沟通能力。
任职要求解析如下:
1、硬性门槛
专业背景:车辆工程/自动化/通信等专业,本科为底线,硕士在算法测试领域更具优势。
经验要求:5年+行业经验,需主导过至少2个完整项目(如NOA从开发到量产),熟悉V模型开发流程。
工具技能:
-
总线工具:CANoe(CAPL脚本开发)、CANape(ECU标定)、TOSUN(自动化测试)。
-
系统技能:Linux基础操作(日志分析、Shell脚本)、车载OS(如QNX)调试经验。
-
编程能力:Python(自动化测试框架搭建)、CAPL(总线仿真)为显著加分项。
2、软性能力
-
用户思维:能从驾驶员视角设计测试用例(如HMI交互体验、功能接管逻辑)。
-
主观评价能力:对车辆动态性能(如转向手感、制动线性度)有敏锐感知者优先。
3、隐性需求
-
驾驶经验:C2驾照(手动挡)要求隐含需测试复杂工况(如坡道泊车),熟悉中国特殊路况(加塞、非标交通标识)。
-
抗压能力:适应高强度路试(如高温/高寒测试)、快速迭代节奏(敏捷开发模式)。
02 技能储备
从通用测试能力向车载领域迁移,都可以从哪些方面准备呢?
1. 强化通用测试能力(直接复用)
测试方法论:教育领域的测试经验(如功能测试、场景设计、缺陷管理)是核心基础,强调你对测试流程(V模型/敏捷)、用例设计(等价类/边界值/场景法)的熟练度。
工具使用:若接触过自动化测试工具(如Selenium)、缺陷管理工具(JIRA),可类比车载领域的工具链(如CANoe、Jenkins)。
2. 补齐车载行业核心技能(重点突破)
车载通信协议:
-
学习CAN/LIN总线协议(书籍推荐:《汽车CAN总线原理与应用》),用免费工具(如SavvyCAN或CANalyzer免费版)模拟报文解析。
-
尝试用Python+SocketCAN实现简单的CAN数据收发(GitHub有开源项目参考)。
工具链入门:
-
学习CANoe基础操作,重点掌握CAPL脚本开发(可自学编写简单的信号触发脚本)。
-
熟悉Vector工具链(CANoe/CANape)的试用版,完成虚拟ECU测试实验。
Linux与车载系统:
-
在虚拟机中安装Ubuntu,练习Linux常用命令(grep、awk、日志分析),学习ROS(机器人操作系统)基础,完成小乌龟仿真等入门项目。
编程能力:
-
用Python开发一个自动化测试脚本(例如:读取CSV测试用例,生成测试报告),展示在GitHub上。
-
学习基础C语言(车载ECU开发常用),理解指针、结构体等概念。
3. 积累行业认知(低成本实践)
开源项目参与:
-
加入Apollo Auto或Autoware等自动驾驶开源社区,参与文档测试或简单Bug修复,积累行业术语和流程认知。
-
在仿真环境(如CARLA、LGSVL)中运行自动驾驶Demo,理解感知-规划-控制的链路。
行业知识学习:
-
通读《智能驾驶功能安全标准ISO 26262解读》,掌握ASIL等级、FMEA分析方法。
-
关注行业报告(如麦肯锡《中国自动驾驶发展报告》),了解NOA、D2D等技术趋势。
最后: 下方这份完整的软件测试视频教程已经整理上传完成,需要的朋友们可以自行领取【保证100%免费】