低代码、AI与自动化测试

📝 面试求职: 「面试试题小程序」 ,内容涵盖 测试基础、Linux操作系统、MySQL数据库、Web功能测试、接口测试、APPium移动端测试、Python知识、Selenium自动化测试相关、性能测试、性能测试、计算机网络知识、Jmeter、HR面试,命中率杠杠的。(大家刷起来…)

📝 职场经验干货:

软件测试工程师简历上如何编写个人信息(一周8个面试)

软件测试工程师简历上如何编写专业技能(一周8个面试)

软件测试工程师简历上如何编写项目经验(一周8个面试)

软件测试工程师简历上如何编写个人荣誉(一周8个面试)

软件测试行情分享(这些都不了解就别贸然冲了.)

软件测试面试重点,搞清楚这些轻松拿到年薪30W+

软件测试面试刷题小程序免费使用(永久使用)


自动化与低代码

作为测试人员,我首先是一个亲力亲为的探索者。我认可自动化的价值,但并不特别喜欢编码。尽管在之前的项目中写过自动化脚本,但我从不认为自己是程序员,也不想拥有“测试自动化工程师”的头衔。你可能会觉得我是低代码自动化工具的理想用户,但事实并非如此。  

或许是因为我需要掌控感,或是更倾向于直接操作。但我见过的任何低代码产品都完全没有吸引我。尽管不喜欢写代码,但我仍愿意选择编码而非低代码工具,原因如下:  

  • 我喜欢自动化带来的实际效果;  

  • 这是强化我技能储备的机会;  

  • 我享受学习和培养不同技能的过程;  

  • 编码具有灵活性;  

  • 相关知识和经验能提升我的白盒/灰盒测试能力,让我更好地参与架构讨论并施加影响;  

  • 我不喜欢“自己做不到”的想法;  

  • 我希望能够胜任任何需要完成的任务。

最近,我从零开始为新系统版本搭建了基础设施并编写了第一个自动化UI流程。编码并非我的爱好,而且这是Salesforce开发,过程很麻烦,但我真心享受这份工作。我学到了很多东西,体会到解决难题的满足感,还收到了积极反馈。如果使用低代码工具,我能获得什么呢?节省的时间是否值得让我错过上述所有收获?  

我不喜欢写自动化代码,但我写自动化代码。而且,我宁愿用编程语言实现,也不想用“自然语言”工具。  

人工智能与“ vibe 编码”

“Vibe Coding” 是一种依赖人工智能的计算机编程实践。

我绝对不属于人工智能的超级粉丝阵营,但也不反对AI。尽管对AI持高度怀疑和谨慎态度,但我确实看到了它的潜力。那么,我在搭建UI自动化的过程中有没有用“vibe编码”(指依赖AI自动生成代码而不深入理解)?当然没有。我特意避免了这种做法,或许是出于自私的掌控欲。  

  • 我不信任AI;  

  • 我不想只追求产出,更想学习;  

  • 我希望理解代码及其背后的逻辑;  

  • 我想自主做出设计和架构决策;  

  • “vibe编码”的整体理念让我感到不安——我看到了太多风险。

但这并不意味着我完全不使用AI。例如,我发现ChatGPT非常有用,把它当作“ sparring partner ”(切磋对象)。我不只是让它生成代码块,而是向它提问:关于开发概念、潜在方法的比较、最佳实践等。本质上,我让它扮演我的老师,要求它解释问题、给出意见并提出改进建议。但我从未在不理解或未审视的情况下直接使用它的代码建议。很多时候,AI的建议存在问题,或者我知道有更好的方案,会提出质疑。  

我还把GitHub Copilot当作一种编码预测工具。有些建议完全没用,但当我需要重复某种模式时,它能识别模式并加快代码编写和编辑速度。同样,我不会让AI根据描述生成整个代码块或文件,但会让它修改非常具体的代码细节,避免手动操作的繁琐。  

也许这是潜在的抗拒、怀疑或固执,或者只是我渴望学习的体现,但我刻意避免“vibe编码”,甚至为此感到奇怪的自豪。当然,这会花费更多时间,代码评审中也会收到合理的意见。但我学到了很多,能回答关于代码的问题。其中的任何错误或不足都是我的责任——我可以为自己编写的东西负责,而不是为外包的代码感到尴尬或困惑。我喜欢这种状态。  

人工智能与测试

我一直好奇AI在生成测试思路等方面的实用性,并尝试过几次,但印象并不深刻。输出不一定糟糕,只是没告诉我任何我不知道或没想过的东西。我认为Rahul Parwal的《Prompting for Testers》课程是对提示工程的很好入门,我用所学知识尝试优化提示词以获得更好的结果。这确实改进了ChatGPT的回答,但仍未达到我的预期。  

总体而言,我发现与AI讨论生成测试思路等宽泛的测试任务很枯燥。更有用的是询问关于Salesforce(我去年首次开始测试的系统)的具体问题。如前所述,我的经验是AI擅长三件事:提供高层次的介绍、爬取互联网并总结小众信息、遵循固定模式。但它不擅长替代有能力和知识的人类的思考过程,也不擅长提供在特定系统中完成特定任务的具体指导。  

尽管我对AI驱动的自动化工具感兴趣(曾认为它可能适合解决Salesforce定位不稳定的问题),但仍持怀疑态度。我缺乏足够的信任让这样的工具直接运行,而不审查、分析并可能改进其生成的自动化内容。坦白说,这可能只是因为我不信任自己不理解的东西。  

关于AI,我目前只是使用者、审视者和评审者,但尚未成为AI的开发者或测试者。也许更多的知识会让我更敢于放手,但现在,我宁愿自己编写自动化代码。  

人工智能与质量工程

我仍在测试AI在两个领域的应用:已知和未知的未知因素(尤其是与风险相关的),以及战略规划。我更喜欢AI能给出某种“观点”,帮助我以新视角看待问题。我不希望AI只是执行指令或迎合我的想法,而是希望它能“测试”我的工作——不仅作为测试人员,更作为质量工程师。我期待更多让我由衷感叹“庆幸问了AI”的时刻。  

反思

除了渴望掌控、喜欢学习和缺乏信任之外,这一切作为测试人员意味着什么?尽管我不热爱编码,但仍坚持编写自动化代码,这是否对我不利?与其他测试人员相比,我对完全拥抱新技术的抗拒是否会让自己落后?我很想在评论中读到你的想法,告诉我这如何影响你对我作为测试人员的看法,以及如果你也有类似抗拒,你对低代码和AI在自动化与测试中的态度是什么。

最后: 下方这份完整的软件测试视频教程已经整理上传完成,需要的朋友们可以自行领取【保证100%免费】

​​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值