青柠汽水308
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
17、构建可重现的 Oracle 机器学习 R 语言管道
本文详细介绍了如何构建一个可重现的 Oracle 机器学习 R 语言管道,涵盖 Oracle Machine Learning for R(OML4R)的安装验证、开源组件(如 TFDV 和 DVC)的配置,以及数据验证、模型监控和实验跟踪等功能的实现。通过这些工具和方法,确保了机器学习实验的准确性与可重复性,为构建高效可靠的机器学习项目提供了指导。原创 2025-09-10 09:12:33 · 17 阅读 · 0 评论 -
16、探索机器学习:从数据处理到模型部署
本文深入探讨了如何利用 Oracle Machine Learning(OML)构建端到端的机器学习管道,涵盖从数据查询与分析、自动化数据处理与特征工程、可扩展的数据库内模型训练与评分,到模型管理、开源包集成以及实验可重复性实现的全过程。文章介绍了 OML 与多种工具和技术的集成,如 OML4Spark、AutoML、TFX、DVC、Kubeflow 等,帮助构建高效、可扩展、可维护的机器学习解决方案。通过详尽的技术解析与实践示例,为读者提供了构建现代化机器学习流程的全面指导。原创 2025-09-09 11:20:04 · 17 阅读 · 0 评论 -
15、机器学习部署与自动化:从基础到实践
本文全面探讨了机器学习的部署与自动化,从基础操作到扩展优化,涵盖了模型训练重现、数据验证、管道抽象、AutoML、模型监控、分布式训练、推理选项以及主流平台的使用。文章还详细介绍了Oracle Machine Learning的应用流程,并根据不同的业务需求提供了工具选择建议,为机器学习在生产环境中的高效应用提供了系统性的指导。原创 2025-09-08 16:15:26 · 16 阅读 · 0 评论 -
14、机器学习在数据分析与应用中的实践与挑战
本文探讨了机器学习在数据分析中的应用及其开发、部署和扩展过程中面临的挑战。以 Oracle Analytics Cloud(OAC)为例,介绍了机器学习在数据预测、模型管理和自动分析中的实践方法。同时,深入剖析了机器学习生命周期中的关键问题,如模型漂移、实时推理、可扩展性等,并提出了基于 MLOps 的解决方案,包括自动化数据科学步骤、CI/CD 工具链集成和模型注册表跟踪机制。通过这些方法,可以有效提升机器学习模型的开发效率和应用稳定性,满足商业场景中对实时分析和智能决策的需求。原创 2025-09-07 16:37:41 · 13 阅读 · 0 评论 -
13、机器学习模型构建与Oracle Analytics Cloud使用指南
本文详细介绍了机器学习模型的应用流程,包括预测新数据、创建预测表以及相关的SQL查询操作。同时,全面解析了Oracle Analytics Cloud(OAC)的使用方法,涵盖数据准备、转换、可视化和叙述功能。通过表格和流程图形式对比了不同操作步骤,并结合电商案例展示了实际应用场景。旨在帮助用户高效利用机器学习和OAC进行数据分析与决策支持。原创 2025-09-06 10:25:03 · 12 阅读 · 0 评论 -
12、机器学习模型构建与应用全流程解析
本文详细解析了机器学习模型的构建与应用全流程,涵盖模型创建、评估、评分、部署以及完整的项目示例。通过使用Oracle Machine Learning (OML) 工具和DBMS_DATA_MINING包,演示了如何从数据准备、模型训练到模型测试与优化的各个环节。适合希望了解机器学习实战流程的开发者和数据科学家参考。原创 2025-09-05 10:05:01 · 10 阅读 · 0 评论 -
11、利用 OML 笔记本构建机器学习模型
本文详细介绍了如何使用OML笔记本在Oracle数据库中构建机器学习模型。内容涵盖机器学习概述、典型流程、Oracle机器学习SQL版(OML4SQL)的功能和使用方法、数据准备与转换、模型创建与评估测试、模型评分与部署等。通过示例代码和图表说明,帮助读者快速掌握利用OML笔记本完成端到端机器学习项目的方法。原创 2025-09-04 11:08:25 · 11 阅读 · 0 评论 -
10、深入探索 Oracle Machine Learning 环境
本文深入介绍了 Oracle Machine Learning(OML)的功能和使用方法,涵盖其对 SQL 和 PL/SQL 的支持、协作环境、笔记本创建与管理、SQL 脚本和语句执行、数据分析与可视化等内容。通过 OML,开发人员、数据科学家和业务分析师能够高效完成机器学习项目中的数据处理、模型构建、结果分析和可视化展示等关键任务。原创 2025-09-03 10:32:22 · 9 阅读 · 0 评论 -
9、探索Oracle Autonomous Data Warehouse的数据加载、导入及机器学习工具使用
本文详细介绍了如何将数据加载到Oracle Autonomous Data Warehouse(ADW),包括上传文件到对象存储、创建凭证以及将数据复制到ADW表的步骤。同时,讲解了如何导入本地数据库的表和模式到ADW,并配置连接进行数据迁移。文章还深入探讨了Oracle Machine Learning(OML)环境的使用,包括工作区、项目和笔记本的管理,以及数据库连接和解释器绑定的设置。最后,通过示例展示了在OML中进行数据探索和分析的过程,帮助开发者更好地利用ADW进行机器学习项目开发。原创 2025-09-02 15:24:48 · 11 阅读 · 0 评论 -
8、深入浅出:Oracle机器学习与自主数据库全攻略
本文深入介绍了Oracle自主数据库及其在机器学习中的应用。内容涵盖数据挖掘与OML笔记本操作、Oracle Cloud Infrastructure的自主数据库类型与架构、数据加载与导出方法,以及实际应用案例分析。通过结合自主数据仓库(ADW)和Oracle Machine Learning工具,展示了如何高效构建、部署和管理机器学习模型,助力企业实现精准营销与业务优化。原创 2025-09-01 15:34:20 · 10 阅读 · 0 评论 -
7、深入了解OML4SQL:模型评分、部署与扩展
本文深入探讨了OML4SQL在机器学习中的应用,重点介绍了模型评分的基础与方法、模型部署流程、分区模型管理以及OML4SQL的扩展功能。内容涵盖使用SQL进行模型评分的多种方法、评分函数的使用场景、模型导出与导入、动态评分与分区模型的实现、数据字典视图的查询,以及PMML模型的导入方式。此外,还介绍了Oracle Data Miner等扩展工具的使用流程。通过这些内容,读者可以全面了解OML4SQL在机器学习任务中的强大功能和灵活应用。原创 2025-08-31 11:52:25 · 9 阅读 · 0 评论 -
6、OML4SQL 机器学习模型的创建、管理与评估
本文详细介绍了在 OML4SQL(Oracle Machine Learning for SQL)中进行机器学习模型创建、管理与评估的完整流程。涵盖了数据转换列表的创建、设置表的使用、模型的创建与管理、模型评估方法(如混淆矩阵、ROC 曲线和提升图)、成本矩阵的应用,以及模型的审计与详细信息查询。此外,还讨论了不同机器学习函数的特定设置,为高效构建和优化模型提供了实用指导。原创 2025-08-30 12:02:53 · 10 阅读 · 0 评论 -
5、Oracle Machine Learning for SQL:功能、操作与数据处理全解析
本文全面解析了 Oracle Machine Learning for SQL(OML4SQL)的功能、操作流程与数据处理技术。内容涵盖数据库中机器学习的优势与局限、OML4SQL 的基础概念、预测分析方法、数据理解与准备步骤,以及各种数据转换操作,如特征缩放、分箱、异常值处理和缺失值处理。同时介绍了不同算法下的自动数据准备(ADP)影响以及自定义转换的实现方法。旨在帮助用户高效利用 OML4SQL 完成机器学习任务,提升模型性能和准确性。原创 2025-08-29 12:04:32 · 11 阅读 · 0 评论 -
4、Oracle 机器学习工具全解析
本文全面解析了 Oracle 提供的多种机器学习工具,包括 OML4SQL、OML4R、OML4Py、Tribuo、OCI Data Science 和 Oracle Analytics Cloud。针对不同背景的用户,如数据库专业人员、R/Python/Java 开发者及业务分析人员,介绍了各工具的适用场景、功能特点及优势,并通过实际案例展示了它们在零售销售预测和图像识别等场景中的应用。此外,还对比了各工具的功能,并结合 AutoML 技术,帮助用户更高效地选择合适的机器学习解决方案。原创 2025-08-28 10:59:47 · 11 阅读 · 0 评论 -
3、机器学习入门:从基础到实践
本博客旨在为读者提供机器学习的全面入门指南,从基础概念、流程、数据处理,到模型构建与评估等方面进行了详细讲解。内容涵盖监督学习、无监督学习和半监督学习的分类及应用场景,数据预处理与特征工程的重要性,以及缺失数据的处理方法。此外,还介绍了模型构建、评估指标、性能测试方法以及机器学习的操作注意事项,帮助读者系统地掌握机器学习的核心知识。原创 2025-08-27 14:33:44 · 9 阅读 · 0 评论 -
2、机器学习算法全解析:从监督到强化学习
本文全面解析了机器学习的核心内容,涵盖从监督学习到强化学习的多种算法及其原理、优缺点和适用场景。文章首先介绍神经网络的超参数调优,接着详细阐述了监督学习中的分类与回归算法,并深入探讨了无监督学习的聚类、关联规则挖掘、异常检测和降维方法。此外,还解析了半监督学习和强化学习的关键技术和应用,为读者提供了全面的理论基础和实践指导。原创 2025-08-26 10:30:56 · 10 阅读 · 0 评论 -
1、机器学习入门:原理与应用解析
本文详细解析了机器学习的基本原理和主要分类,包括监督学习、无监督学习和深度学习等内容,同时探讨了其在实际应用中的流程与挑战,帮助读者全面了解机器学习的核心知识及其在多个领域的实际用途。原创 2025-08-25 13:12:19 · 8 阅读 · 0 评论