- [论文极简笔记] Efficient Neural Architecture Search via Parameter Sharing
- [论文极简笔记]FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search
- [论文极简笔记] Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search
- [论文极简笔记] Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation
- [论文极简笔记] Searching for A Robust Neural Architecture in Four GPU Hours
- [论文极简笔记] NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection
- [论文极简笔记] Weight Agnostic Neural Networks
1 背景
AutoML是个很宽泛的概念,宽泛到任何机器学习任务都可以理论上用AutoML完成,这就带来了很大的想象空间。最近做了一个关于此的调研工作,调研重点放在了NAS网络搜索上,因为这是目前研究的热点,在最新的CVPR2019上,该领域发表了14篇文章。