Weka源码分析(1)——模块划分及core package分析

本文详细分析了Weka数据挖掘工具的模块划分,重点探讨了core package中的数据表示,包括Attribute、Instance及其继承体系、Instances类。Attribute类的fields、constructor和properties被详尽阐述,同时解释了各种Instance实现如何处理数据,特别是DenseInstance和SparseInstance的差异。Instances类则负责整个数据集的管理,包含属性和实例的交互操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.1模块划分

weka采用maven作为构建工具,从module划分的角度,是个单module系统,但是weka的从package划分上体现了“关注点分离”。
weka package划分
各package关注点(职责划分)如下:

分类 package name 职责
算法 associations 关联规则算法
attributeSelection 属性选择算法
classifiers 分类算法
clusterers 聚类算法
底层基础服务 core
数据预处理 filters 数据过滤、变换
常见分布估计 estimators
数据生成器 datagenerators 按照指定的规则生成数据
易用性部分 experiment
gui 用户界面
Knowledgeflow 工作流支撑系统

1.2core package分析

1.2.1 数据表示

逻辑上,挖掘算法将数据集(DataSet)认为是“二维表”。
逻辑上二维表
Weka中对应关系如下:

概念 Weka 实现 备注
属性 Attribute
属性元信息 A
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值