- 博客(6876)
- 资源 (3)
- 收藏
- 关注
原创 大数据毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅
毕设开题阶段,同学们都比较迷茫该如何选题,有的是被要求自己选题,但不知道自己该做什么题目比较合适,有的是老师分配题目,但题目难度比较大,指导老师提供的信息和帮助又比较少,不知道从何下手。与此同时,又要准备毕业后的事情,比如考研,考公,实习等,一边忙碌备考或者实习,一边还得为毕设伤透脑筋。除非是算法类或者科研性项目,项目代码要有一定的工作量和完整度,否则后期论文的撰写会很难写,因为论文是要基于项目写的,如果项目的工作量太少,又缺乏研究性的东西,则会导致很难写出成篇幅的东西。毕业设计选题非常重要!
2024-10-08 00:00:00
1172
1
原创 计算机毕业设计PySpark+Hive+大模型小红书评论情感分析 小红书笔记可视化 小红书舆情分析预测系统 大数据毕业设计(源码+LW+PPT+讲解)
本文综述了PySpark、Hive与大语言模型在小红书评论情感分析中的技术融合与应用。通过PySpark实现分布式计算处理海量数据,Hive优化存储查询效率,结合大模型提升语义理解精度(准确率达92%)。创新性地采用分层分析策略和多模态情感融合技术,解决了传统方法的实时性瓶颈和语义理解难题。同时探讨了数据稀疏性、模型轻量化和多模态对齐等挑战,提出数据增强、模型压缩等解决方案。该技术框架为品牌营销和舆情监测提供了高效支持,未来将在精度与实时性平衡方面持续优化。
2025-12-15 11:34:32
162
原创 计算机毕业设计Django+LLM大模型深度学习疾病预测系统 疾病大数据 医学大数据分析 大数据毕业设计(源码+LW+PPT+讲解)
本文综述了基于Django框架与LLM大模型的深度学习疾病预测系统。Django框架提供稳定的Web开发支持,结合LLM大模型的语言理解和多模态融合能力,以及深度学习模型的特征提取优势,该系统在癌症诊断、传染病预测和慢性病管理等领域展现出强大潜力。应用案例显示,如PathChat模型在病理识别中准确率达90%,GatorTron在肺癌诊断中准确度达0.8916。当前面临数据质量、模型可解释性等挑战,未来需发展轻量化模型、联邦学习等技术。该系统为医疗AI提供了高精度、实时交互的创新解决方案。
2025-12-15 11:34:17
492
原创 计算机毕业设计PySpark+Hive+大模型小红书评论情感分析 小红书笔记可视化 小红书舆情分析预测系统 大数据毕业设计(源码+LW+PPT+讲解)
摘要:本文介绍了一个基于PySpark+Hive+大模型的小红书评论情感分析系统设计方案。该研究结合分布式计算框架PySpark、数据仓库Hive和深度学习大模型,旨在解决传统方法在处理海量社交电商评论时效率低、准确率不足的问题。系统通过数据采集、清洗、特征提取、模型微调等步骤,构建端到端的情感分析解决方案,为商家和消费者提供决策支持。创新点在于混合架构设计和领域适配优化,预期成果包括系统原型、实验报告和应用场景实现。项目适合大数据、人工智能等领域的学习和研究。
2025-12-15 11:34:03
262
原创 计算机毕业设计PySpark+Hive+大模型小红书评论情感分析 小红书笔记可视化 小红书舆情分析预测系统 大数据毕业设计(源码+LW+PPT+讲解)
本文提供了一份基于PySpark+Hive+大模型的小红书评论情感分析任务书模板。项目目标是通过分布式计算框架实现海量评论数据的高效处理,结合预训练大模型进行细粒度情感分类。任务内容包括数据采集清洗、模型微调优化、分布式推理和可视化分析,采用PySpark、Hive、BERT等技术栈。项目计划6周完成,要求达到85%以上的分类准确率,并输出可视化报告和业务建议。文末附有获取源码的联系方式,适用于大数据和人工智能领域的毕业设计选题参考。
2025-12-15 11:33:50
430
原创 计算机毕业设计PySpark+Hive+大模型小红书评论情感分析 小红书笔记可视化 小红书舆情分析预测系统 大数据毕业设计(源码+LW+PPT+讲解)
摘要:本文提出基于PySpark+Hive+大模型的融合方案,实现小红书评论情感分析系统。通过分布式计算框架处理TB级数据,结合BERT-LSTM混合模型提升情感分析准确率至94.2%。系统采用Hive分区表优化存储,实现分钟级舆情监测,在3节点集群上处理速度达8.2万条/秒,较传统方案提升17倍。实验表明,该方案能有效识别网络新词,支持12维度的多角度分析,为品牌营销决策提供实时数据支持。
2025-12-15 11:33:40
203
原创 计算机毕业设计PySpark+Hive+大模型小红书评论情感分析 小红书笔记可视化 小红书舆情分析预测系统 大数据毕业设计(源码+LW+PPT+讲解)
摘要:本文提出基于PySpark+Hive+大模型的融合方案,实现小红书评论情感分析系统。通过分布式计算框架处理TB级数据,结合BERT-LSTM混合模型提升情感分析准确率至94.2%。系统采用Hive分区表优化存储,实现分钟级舆情监测,在3节点集群上处理速度达8.2万条/秒,较传统方案提升17倍。实验表明,该方案能有效识别网络新词,支持12维度的多角度分析,为品牌营销决策提供实时数据支持。
2025-12-15 11:33:28
578
原创 计算机毕业设计Spark+Hadoop+Hive+LLM大模型+Django农产品销量预测系统 农产品推荐系统 农产品大模型AI问答 农产品数据分析可视化
本文介绍了一个基于Spark+Hadoop+Hive+LLM大模型+Django的农产品销量预测系统。该系统整合分布式计算、数据仓库、大语言模型和Web开发技术,实现农业大数据的高效处理与精准预测。创新点在于混合架构设计,将Spark/Hadoop的分布式处理能力与LLM的多模态理解能力相结合,并注入农业领域知识提升预测精度。系统包含数据采集、预处理、预测模型构建和可视化展示全流程,旨在为农业企业提供智能决策支持。研究面临多模态数据对齐和LLM轻量化部署等挑战,预期成果包括系统原型、实验报告和实际应用案例。
2025-12-15 11:33:18
590
原创 计算机毕业设计Spark+Hadoop+Hive+LLM大模型+Django农产品销量预测系统 农产品推荐系统 农产品大模型AI问答 农产品数据分析可视化
摘要:本文介绍了一个基于Spark+Hadoop+Hive+LLM大模型+Django的农产品销量预测系统开发任务书。该系统整合分布式计算、存储和大模型技术,构建高精度预测模型,并通过Web应用实现可视化分析。主要内容包括:1)搭建Hadoop+Hive数据仓库整合多源数据;2)使用Spark进行特征工程和LLM模型开发;3)基于Django开发可视化Web应用。系统目标为预测精度MAE≤10%,支持100并发用户访问。任务书详细规划了技术方案、分工、时间计划和验收标准,适用于大数据与AI领域的毕业设计参考
2025-12-15 11:33:07
391
原创 计算机毕业设计Spark+Hadoop+Hive+LLM大模型+Django农产品销量预测系统 农产品推荐系统 农产品大模型AI问答 农产品数据分析可视化
本文综述了基于Spark+Hadoop+Hive+LLM大模型+Django框架的农产品销量预测系统。该系统整合分布式计算、深度学习和Web开发技术,实现多源数据融合与高精度预测,显著提升预测准确度(如生猪价格预测MAPE=7.8%)。核心创新包括:Hadoop+Spark+Hive构建PB级数据基础设施;LLM大模型实现多模态特征融合与动态特征工程;Django支持交互式可视化与AI问答。应用效果显示,系统可提前30天预警价格波动,助力政府调控和企业决策。未来将探索多模态大模型融合、边缘计算部署等技术方向
2025-12-15 11:32:56
241
原创 计算机毕业设计Spark+Hadoop+Hive+LLM大模型+Django农产品销量预测系统 农产品推荐系统 农产品大模型AI问答 农产品数据分析可视化
摘要:本文提出基于Spark+Hadoop+Hive+LLM大模型+Django的农产品销量预测系统,通过分布式计算与深度学习技术融合解决农业供需失衡问题。系统采用五层架构设计,集成Hadoop存储、Spark特征计算、Hive数据仓库和DeepSeek-R1大模型,实现多源数据融合分析。实验结果表明,在生猪价格预测任务中,混合模型MAPE误差率降至7.8%,较传统ARIMA模型提升40%,预测延迟低于3秒。系统支持实时预警与可视化决策,成功应用于生猪养殖企业案例,减少经济损失300万元。该技术框架为农业数
2025-12-15 11:32:12
343
原创 计算机毕业设计Spark+Hadoop+Hive+LLM大模型+Django农产品销量预测系统 农产品推荐系统 农产品大模型AI问答 农产品数据分析可视化
本文介绍了一个基于Spark+Hadoop+Hive+LLM大模型+Django的农产品销量预测系统。系统采用分布式计算框架处理多源数据,结合时间序列模型、机器学习和大语言模型进行销量预测,实现县域级农产品7日滚动预测,平均误差控制在8%以内。系统架构包含数据采集、特征工程、模型训练和预测服务全流程,支持结构化与非结构化数据处理,并提供可视化展示和大模型解释功能。实际应用显示预测准确率提升47%,库存周转率提高30%,年节约成本约200万元。未来将融合卫星遥感数据,应用联邦学习技术进一步提升系统性能。
2025-12-15 11:31:57
378
原创 计算机毕业设计Django+LLM大模型深度学习疾病预测系统 疾病大数据 医学大数据分析 大数据毕业设计(源码+LW+PPT+讲解)
摘要:本文提出一个基于Django框架与LLM大模型的深度学习疾病预测系统,旨在解决传统医疗预测方法的局限性。系统整合多模态医疗数据(电子病历、医学影像、实验室指标),通过微调医学领域LLM(如Med-PaLM)提取文本特征,结合CNN处理影像数据,并设计跨模态注意力机制实现特征融合。创新点包括:1)首次将医学LLM与深度学习模型结合;2)通过SHAP值可视化增强结果可解释性;3)采用轻量化部署支持Web端实时预测。预期开发支持糖尿病、肺炎等常见病预测的平台,目标AUC-ROC≥0.9。研究面临数据隐私保护
2025-12-15 11:31:29
278
原创 计算机毕业设计Django+LLM大模型深度学习疾病预测系统 疾病大数据 医学大数据分析 大数据毕业设计(源码+LW+PPT+讲解)
摘要:本文介绍了一个基于Django+LLM大模型的深度学习疾病预测系统开发任务书模板。系统整合Web开发与大模型推理技术,旨在通过多模态医疗数据处理辅助医生诊断。主要内容包括:1) 数据预处理与医疗知识图谱构建;2) 医疗大模型(如Med-PaLM)的优化部署与解释性分析;3) Django框架搭建的Web应用开发,实现数据上传、预测和报告生成功能。系统采用React/Vue.js前端,PostgreSQL+Neo4j数据库架构,要求达到85%以上的预测准确率和1秒内的响应速度。项目特别关注数据隐私保护、
2025-12-15 11:28:18
761
原创 计算机毕业设计Django+LLM大模型深度学习疾病预测系统 疾病大数据 医学大数据分析 大数据毕业设计(源码+LW+PPT+讲解)
本文综述了基于Django框架与LLM大模型的深度学习疾病预测系统。Django框架提供稳定的Web开发支持,结合LLM大模型的语言理解和多模态融合能力,以及深度学习模型的特征提取优势,该系统在癌症诊断、传染病预测和慢性病管理等领域展现出强大潜力。应用案例显示,如PathChat模型在病理识别中准确率达90%,GatorTron在肺癌诊断中准确度达0.8916。当前面临数据质量、模型可解释性等挑战,未来需发展轻量化模型、联邦学习等技术。该系统为医疗AI提供了高精度、实时交互的创新解决方案。
2025-12-15 11:28:07
394
原创 计算机毕业设计Django+LLM大模型深度学习疾病预测系统 疾病大数据 医学大数据分析 大数据毕业设计(源码+LW+PPT+讲解)
本文介绍了一个基于Django框架和LLM大模型的智能疾病预测系统。系统通过融合结构化医疗数据和非结构化病历文本,采用多模态特征提取和混合预测模型(XGBoost+微调LLM),实现了高精度疾病风险预测(AUC达0.92)和可解释诊断报告生成。系统架构包含数据层(PostgreSQL+Elasticsearch)、模型层(知识图谱增强)、服务层(RESTful API)和展示层(交互式可视化)。关键技术包括LLM医学领域优化、多模态数据融合和可解释性增强。应用效果显示诊断准确率提升40%,医生效率提高60%
2025-12-15 11:27:55
262
原创 计算机毕业设计Django+LLM大模型股票行情预测系统 量化交易分析 股票爬虫 大数据毕业设计(源码+文档 +PPT+讲解)
摘要:本文介绍了一个基于Django框架和LLM大模型的股票行情预测系统,该系统通过多模态数据融合(包括实时行情、新闻舆情、社交媒体等),结合LSTM时序模型和微调后的LLM大模型,实现了对沪深300成分股的短期趋势预测。系统具有68%的方向预测准确率,能自动生成包含市场情绪和关键事件的解释报告,响应时间小于1秒。关键技术包括财经领域LLM优化、多模态特征融合和实时数据处理。该系统已在券商试点中取得显著效果,未来计划扩展高频预测和自动化交易功能。
2025-12-15 11:27:44
237
原创 计算机毕业设计Django+LLM大模型股票行情预测系统 量化交易分析 股票爬虫 大数据毕业设计(源码+文档 +PPT+讲解)
本文提出一种基于Django框架与大型语言模型(LLM)的股票行情预测系统,通过整合多源金融数据与新闻文本,结合深度学习算法与LLM的自然语言处理能力,实现高精度、可解释的股票价格走势预测。系统采用模块化设计,涵盖数据采集、预处理、特征工程、模型训练与预测结果可视化等环节。实验结果表明,该系统在A股市场的预测任务中,准确率与F1分数较传统模型显著提升,且具备实时预警与投资决策支持能力,为金融科技领域提供了创新解决方案。
2025-12-15 11:27:29
333
原创 计算机毕业设计Django+LLM大模型股票行情预测系统 量化交易分析 股票爬虫 大数据毕业设计(源码+文档 +PPT+讲解)
本文介绍了基于Django框架和LLM大模型的股票行情预测系统开发。系统采用分层架构设计,整合多源数据(行情数据、基本面数据、舆情数据)进行特征工程,利用LSTM、Transformer等深度学习模型进行预测。文章重点分析了Django框架在快速开发、安全架构方面的优势,以及LLM在多模态数据处理和上下文理解方面的价值。同时探讨了系统面临的挑战(数据质量、模型泛化等)和未来发展方向(多模态融合、可解释AI等)。该系统为金融科技智能化提供了技术参考,适合计算机/金融相关专业的毕业设计选题。
2025-12-15 11:26:46
518
原创 计算机毕业设计Django+LLM大模型股票行情预测系统 量化交易分析 股票爬虫 大数据毕业设计(源码+文档 +PPT+讲解)
摘要:本文介绍了一个基于Django框架和LLM大模型的股票行情预测系统开发任务书。系统整合Web开发、时序预测与金融分析,支持多模态数据输入(历史行情、新闻舆情等),通过微调金融大模型实现股价趋势预测和风险预警。项目包含数据预处理、模型开发、Web应用构建三个核心模块,采用Django+React/Vue技术栈,要求预测误差≤5%,响应时间≤300ms。系统提供可视化看板、策略回测等功能,并考虑金融合规性。适合作为毕业设计选题,涵盖大数据处理、深度学习和Web开发等技术领域。
2025-12-15 11:26:35
257
原创 计算机毕业设计Django+LLM大模型股票行情预测系统 量化交易分析 股票爬虫 大数据毕业设计(源码+文档 +PPT+讲解)
本文介绍了一个基于Django框架和LLM大模型的股票行情预测系统设计方案。该系统整合了传统金融数据分析与深度学习技术,通过LSTM、Transformer等模型处理历史股价数据,结合FinBERT等大语言模型分析新闻舆情,实现多模态金融数据融合预测。系统采用Django开发Web平台,提供实时行情展示、趋势预测和事件影响分析功能。创新点在于首次将金融领域LLM与时间序列模型结合,并实现预测结果的可解释性。研究难点包括数据噪声处理、跨模态特征对齐和市场有效性限制。预期成果为可部署的预测平台,帮助投资者进行量
2025-12-15 11:26:22
246
原创 计算机毕业设计Django+DeepSeek大模型知识图谱古诗词情感分析 古诗词推荐系统 古诗词可视化 大数据毕业设计(源码+LW+PPT+讲解)
本文提出了一种基于Django框架和DeepSeek大模型的古诗词情感分析方法,结合知识图谱技术增强语义理解。研究背景指出传统情感分析方法难以捕捉古诗词的深层语义特征,而大模型与知识图谱的结合可提升分析效果。技术路线包括:构建古诗词知识图谱,微调DeepSeek模型,开发Django Web系统实现情感分类和知识查询功能。创新点在于知识增强的大模型分析方法和可解释性情感分析。预期成果包括开发完成的系统、10%以上的性能提升及相关学术成果。该研究为古诗词情感分析提供了新的技术路径,具有理论和实践价值。
2025-12-14 09:24:08
477
原创 计算机毕业设计Django+DeepSeek大模型知识图谱古诗词情感分析 古诗词推荐系统 古诗词可视化 大数据毕业设计(源码+LW+PPT+讲解)
本文介绍了一个基于Django框架和DeepSeek大模型的古诗词情感分析系统项目。该项目旨在通过结合大模型的深度语义理解能力和知识图谱的结构化知识,构建更精准的古诗词情感分析平台。系统包含诗词输入预处理、DeepSeek语义解析、知识图谱增强分析和可视化交互四大核心模块,采用Django+Vue.js+Neo4j+MySQL技术栈实现。项目预期成果包括可运行系统、古诗词知识图谱和学术论文,并设定了情感分析准确率≥85%等性能指标。该研究探索了大模型与知识图谱在古典文学领域的创新应用,具有重要的文化和学术价
2025-12-14 09:24:01
423
原创 计算机毕业设计Django+DeepSeek大模型知识图谱古诗词情感分析 古诗词推荐系统 古诗词可视化 大数据毕业设计(源码+LW+PPT+讲解)
本文探讨了基于Django框架、DeepSeek大模型和知识图谱的古诗词情感分析系统。系统采用分层架构,整合结构化与非结构化数据存储,利用DeepSeek大模型的语义理解能力和知识图谱的文化语境支撑,实现诗词情感的多维度分析。创新点包括多模态融合技术、隐性知识推理和动态知识图谱构建。应用场景涵盖教育研究和文化传承,可提升诗词理解的准确性和深度。未来研究方向包括多模态知识融合和强化学习推荐。该系统为古诗词数字化提供了高精度、可解释的解决方案,有助于推动传统文化的智能化传承。
2025-12-14 09:23:52
502
原创 计算机毕业设计Django+DeepSeek大模型知识图谱古诗词情感分析 古诗词推荐系统 古诗词可视化 大数据毕业设计(源码+LW+PPT+讲解)
摘要:本文提出基于Django框架与DeepSeek大模型的古诗词情感分析系统,通过构建知识图谱增强文化背景理解,结合大模型的深度语义解析能力实现高精度情感分类。系统采用分层架构设计,包含数据层、算法层、服务层与表现层,在《全唐诗》数据集上情感分析准确率达92.3%,较传统方法提升16.1%。关键技术包括知识图谱构建、DeepSeek模型微调、多跳推理等,支持用户自定义查询与动态可视化分析,为古诗词数字化研究提供新范式。
2025-12-14 09:23:45
569
原创 计算机毕业设计Django+DeepSeek大模型知识图谱古诗词情感分析 古诗词推荐系统 古诗词可视化 大数据毕业设计(源码+LW+PPT+讲解)
本项目结合Django框架与DeepSeek大模型,构建了一个古诗词情感分析系统。系统通过知识图谱(Neo4j)存储诗词-意象-作者关系,利用DeepSeek进行深度语义理解,实现诗词情感分类与意象解析。技术架构包含数据层(MySQL/MongoDB)、算法层(微调DeepSeek模型)、应用层(Django RESTful API)和展示层(Vue.js可视化)。创新点在于将大模型与知识图谱结合,提升情感分析准确性至90%以上,并支持动态可视化展示。应用场景包括文化研究、教育传播等领域。未来可扩展多模态分
2025-12-14 09:23:38
456
原创 计算机毕业设计Django+LLM大模型智能路线规划数据分析与个性化推荐系统 旅游路线推荐系统 旅游路线规划系统 大数据毕业设计
本文介绍了一个基于Django框架和LLM大模型的智能路线规划与推荐系统。系统采用前后端分离架构,前端使用Vue3实现交互界面,后端通过Django提供API服务,整合多源数据(交通网络、POI、用户行为等)实现智能化路线规划。核心技术包括:1)LLM语义理解用户需求;2)混合路径算法(A*与LLM协同);3)个性化推荐模型(协同过滤+内容推荐)。系统在旅游、通勤等场景中展现出良好的应用效果,推荐准确率提升23%。文章还探讨了数据安全、性能优化及未来发展方向(多模态推荐、边缘计算等)。文末提供源码获取方式和
2025-12-14 09:23:32
910
原创 计算机毕业设计Django+LLM大模型智能路线规划数据分析与个性化推荐系统 旅游路线推荐系统 旅游路线规划系统 大数据毕业设计
本文提出了一种基于Django框架和LLM大模型的智能路线规划系统,旨在解决传统路线规划系统在语义理解、个性化推荐和多源数据整合方面的不足。系统采用前后端分离架构,通过LLM进行语义解析,结合遗传算法和混合推荐算法(协同过滤+内容推荐)实现个性化路线推荐。实验结果表明,该系统在推荐准确率(82.3%)、用户满意度(4.6/5)和响应时间(1.2秒)方面均优于传统方法。未来工作将聚焦多模态推荐、可解释AI和边缘计算等方向,进一步提升系统性能和用户体验。
2025-12-14 09:23:25
556
原创 计算机毕业设计Django+LLM大模型智能路线规划数据分析与个性化推荐系统 旅游路线推荐系统 旅游路线规划系统 大数据毕业设计
本文介绍了一个基于Django框架和大型语言模型(LLM)的智能路线规划系统,整合了多源数据、语义解析和混合推荐算法。系统采用Django的MTV设计模式与ORM功能简化数据库操作,结合LLM解析用户需求生成结构化查询条件。推荐算法从协同过滤演进到深度学习和多模态融合,并引入强化学习进行动态调整。系统整合静态和动态数据,采用联邦学习和知识图谱增强语义分析。文章对比了学术研究、商业实践和开源项目的应用情况,指出当前面临的冷启动、算法可解释性和实时性等挑战,展望了多模态推荐和边缘计算等未来发展方向。
2025-12-14 09:23:19
366
原创 计算机毕业设计Django+LLM大模型智能路线规划数据分析与个性化推荐系统 旅游路线推荐系统 旅游路线规划系统 大数据毕业设计
本文介绍了一个基于Django框架和LLM大模型的智能路线规划与个性化推荐系统。该系统通过融合实时交通数据与用户偏好,利用LLM的语义理解能力实现动态路线优化和个性化推荐。研究内容包括数据采集、LLM微调、算法设计和系统开发,预期成果为具有语义化路线描述和上下文感知推荐功能的系统原型。创新点在于LLM驱动的智能规划与轻量化部署方案,旨在提升用户体验和系统响应速度。
2025-12-14 09:23:12
690
原创 计算机毕业设计Django+LLM大模型智能路线规划数据分析与个性化推荐系统 旅游路线推荐系统 旅游路线规划系统 大数据毕业设计
本文介绍了一个基于Django框架和LLM大模型的智能路线规划系统开发任务书。系统结合自然语言处理技术,实现个性化路线推荐功能,包含用户交互、路线规划引擎、数据分析推荐和可视化反馈四大核心模块。项目采用Django后端+地图API前端的技术架构,集成LLM模型进行语义理解,并通过机器学习算法分析用户行为数据。任务书详细规划了10周开发周期,预期实现快速响应、高准确率的智能推荐系统,同时提出了成本控制、数据延迟和隐私保护等风险应对方案。适合计算机专业学生作为毕业设计选题参考。
2025-12-14 09:22:16
452
原创 计算机毕业设计hadoop+spark+hive新能源汽车推荐系统 汽车数据分析可视化大屏 新能源汽车推荐系统 汽车爬虫 汽车大数据 机器学习
本文介绍了一个基于Hadoop+Spark+Hive的新能源汽车推荐系统。系统整合多源异构数据(用户行为、车辆参数、市场评价等),采用分层架构设计,通过Spark MLlib和深度学习模型实现高精度推荐。关键技术包括Flume/Kafka数据采集、SparkSQL特征工程、ALS和Wide&Deep混合模型训练,以及Spark Streaming实时推荐。系统创新性地融合协同过滤与深度学习,支持秒级响应和可解释推荐,已在电商平台应用中取得显著效果,用户转化率提升30%。未来可探索强化学习和多模态学习
2025-12-14 09:21:39
523
原创 计算机毕业设计hadoop+spark+hive新能源汽车推荐系统 汽车数据分析可视化大屏 新能源汽车推荐系统 汽车爬虫 汽车大数据 机器学习
本文提出了一种基于Hadoop+Spark+Hive技术栈的新能源汽车智能推荐系统。针对当前新能源汽车市场信息过载、决策周期长等问题,系统采用分布式存储架构和多源数据融合技术,整合销售数据、社交媒体评论及IoT设备日志等多维度信息。通过Spark实时计算框架和混合推荐算法,实现了用户需求与车辆特征的精准匹配。实验结果显示,该系统使推荐转化率提升18%,客单价提高15%,用户留存率增长25%,为新能源汽车产业智能化升级提供了有效解决方案。
2025-12-14 09:21:33
626
原创 计算机毕业设计hadoop+spark+hive新能源汽车推荐系统 汽车数据分析可视化大屏 新能源汽车推荐系统 汽车爬虫 汽车大数据 机器学习
本文综述了基于Hadoop+Spark+Hive的新能源汽车推荐系统研究。系统采用五层架构设计,整合多源数据,运用协同过滤、深度学习与知识图谱技术实现精准推荐。研究显示,该方案有效解决了数据孤岛、实时性瓶颈等问题,在车企产品优化、销售策略等方面取得显著成效。当前面临数据质量、模型可解释性等挑战,未来将向边缘计算、强化学习等方向发展。该技术框架为新能源汽车智能化推荐提供了可靠解决方案。
2025-12-14 09:21:28
536
原创 计算机毕业设计hadoop+spark+hive新能源汽车推荐系统 汽车数据分析可视化大屏 新能源汽车推荐系统 汽车爬虫 汽车大数据 机器学习
摘要:本文介绍了一个基于Hadoop+Spark+Hive的新能源汽车推荐系统开发项目。该系统旨在利用大数据技术处理多源异构数据,构建个性化推荐模型,提升用户购车决策效率。项目包含数据采集、用户画像构建、车辆特征工程、推荐算法等核心模块,采用混合推荐策略(CBF+ALS+Wide&Deep)实现冷热启动场景下的精准推荐。系统架构涵盖Hadoop分布式存储、Spark实时计算、Hive数据仓库等技术栈,预期实现推荐准确率≥80%的目标。项目适用于新能源汽车电商平台,具有提升转化率、优化营销策略等业务价
2025-12-14 09:21:22
672
原创 计算机毕业设计hadoop+spark+hive新能源汽车推荐系统 汽车数据分析可视化大屏 新能源汽车推荐系统 汽车爬虫 汽车大数据 机器学习
本文介绍了一个基于Hadoop+Spark+Hive的新能源汽车推荐系统设计方案。系统通过整合用户行为数据、车辆参数和外部数据(充电桩分布、政策补贴等),利用Spark MLlib构建混合推荐模型(协同过滤+深度学习),实现个性化推荐。关键技术包括异构数据融合、冷启动解决方案和模型可解释性处理。预期成果包括开发分布式推荐系统、提高推荐准确率15%以上,并支持10万+用户实时处理。创新点在于多维度数据融合和可解释性推荐功能。系统适用于计算机/大数据专业毕业设计,提供完整的技术路线和实施方案。
2025-12-14 09:21:16
824
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅