计算机毕业设计Python知识图谱中华古诗词可视化 古诗词情感分析 古诗词智能问答系统 AI大模型自动写诗 大数据毕业设计(源码+LW文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

Python知识图谱中华古诗词可视化与古诗词情感分析

摘要:本文探讨了利用Python技术实现中华古诗词知识图谱可视化与情感分析的方法。中华古诗词作为中华民族的文化瑰宝,蕴含着丰富的历史、文化和情感内涵。Python凭借其强大的数据处理、自然语言处理和可视化能力,为古诗词的数字化处理与深度分析提供了有力支持。本文详细阐述了古诗词数据采集与预处理、知识图谱构建、情感分析以及可视化的实现过程,并通过实验验证了相关方法的有效性。研究结果表明,基于Python的中华古诗词知识图谱可视化与情感分析系统能够直观地展示古诗词的知识结构和情感特征,为古诗词的研究、教学和传承提供了新的途径。

关键词:Python;中华古诗词;知识图谱;可视化;情感分析

一、引言

中华古诗词源远流长,从先秦的《诗经》《楚辞》到唐宋诗词的巅峰,再到明清诗词的延续,不同时代的古诗词作品反映了当时的社会风貌、人文精神与诗人的内心世界。然而,随着时代变迁,古诗词的传承与理解面临一定挑战,普通读者难以全面、深入地领略其魅力。传统的诗词书籍阅读方式相对单一,难以满足现代人快速获取信息和直观理解的需求。同时,古诗词中蕴含的复杂知识关系,如诗人之间的师承、交游关系,诗词所涉及的历史事件、地理信息、意象内涵等,往往难以通过简单的文字描述清晰地展现出来。

随着信息技术的飞速发展,大数据、人工智能等技术为古诗词的研究和传承提供了新的方法和途径。知识图谱作为一种能够表示实体及其之间关系的知识结构,可以将古诗词中的诗人、诗词作品、创作背景、意象等元素进行关联,构建一个丰富的知识网络。而可视化技术则能够将复杂的知识图谱以直观的图形方式呈现出来,帮助用户更好地理解和探索古诗词知识。同时,古诗词情感分析也是当前自然语言处理领域的一个研究热点。古诗词往往蕴含着诗人丰富的情感,如喜悦、悲伤、愤怒、思乡等。通过对古诗词进行情感分析,可以深入了解诗人的内心世界,感受古诗词所传达的情感魅力,也为古诗词的鉴赏和教学提供新的视角。

Python作为一种功能强大、易于使用的编程语言,拥有丰富的数据处理、知识图谱构建、可视化和情感分析库,为开展本课题的研究提供了有力的技术支撑。

二、相关工作

(一)国内研究现状

近年来,国内学者在古诗词数字化处理方面取得了显著进展。在自然语言处理方面,利用分词、词性标注、情感分析等技术解析诗词内容。例如,有研究利用jieba库对古诗词文本进行分词,识别出诗人、诗作、朝代、意象等实体。在知识图谱构建方面,尝试构建包含诗人、作品、主题等节点的知识图谱。部分研究基于预处理后的数据,利用Neo4j等图数据库构建古诗词的知识图谱,图谱中的节点包括诗人、诗作、朝代、类别等,边表示节点之间的关系,如诗人创作诗作、诗作属于某个朝代等。在可视化研究方面,通过图形化技术展示诗词结构和关系。利用D3.js、ECharts等前端可视化库,将知识图谱以直观、交互式的方式展示出来,用户可以通过点击节点或边,查看相关诗人或诗作的信息,深入了解古诗词的结构和关系。在情感分析方面,部分研究采用基于词典的方法或传统的机器学习方法对古诗词进行情感分类,但这些方法在处理古诗词复杂的语义和情感表达时效果有待提高。

(二)国外研究现状

国外在知识图谱和自然语言处理情感分析方面已经取得了较为丰富的研究成果。在知识图谱领域,Google的Knowledge Graph、微软的Satori等大型知识图谱项目为知识的组织和检索提供了新的模式。在情感分析方面,国外学者提出了多种基于机器学习和深度学习的情感分析方法,如支持向量机(SVM)、卷积神经网络(CNN)、循环神经网络(RNN)等,并在社交媒体评论、电影评论等领域得到了广泛应用。然而,由于中华古诗词具有独特的语言特点和文化背景,国外的研究成果在直接应用于古诗词研究时存在一定的局限性。

三、研究方法

(一)数据采集与预处理

从权威的诗词网站(如古诗文网、诗词吾爱网等)收集古诗词文本数据,同时获取诗词的作者、朝代、注释等相关信息。使用Python的requests和BeautifulSoup库编写爬虫程序,从目标网站获取古诗词数据。对收集到的数据进行清洗,去除噪声数据,如重复诗词、错误字符等,并进行分词、词性标注、命名实体识别等预处理操作,为后续知识图谱构建与情感分析奠定基础。例如,使用jieba库进行分词,利用正则表达式提取关键信息,统一诗人的姓名格式,修正诗词文本中的错别字等。

(二)知识图谱构建

  1. 实体识别与关系抽取:运用自然语言处理技术对诗词文本进行处理。采用基于规则和机器学习相结合的方法,从预处理后的数据中识别出诗人、诗词作品、意象等实体。通过规则匹配和基于机器学习的关系抽取方法,挖掘实体之间的关系,如诗人与诗词的创作关系、诗词与意象的包含关系等。例如,定义一系列规则,如“人名 + 创作 + 诗词名”等模式,识别诗人、诗作等实体;同时,利用sklearn库中的机器学习算法,如决策树、支持向量机等,对标注好的训练数据进行学习,构建实体识别模型,提高识别的准确性和泛化能力。
  2. 知识图谱存储:选择Neo4j图数据库进行存储,将识别出的实体和关系存储到数据库中,构建中华古诗词知识图谱。使用Python的Py2neo库连接Python和Neo4j,根据定义的实体和关系类型,编写Python脚本将预处理后的数据导入到Neo4j中。

(三)情感分析

  1. 情感词典构建:构建专门针对古诗词的情感词典,结合通用情感词典与古诗词领域特点,添加具有古诗词特色的情感词汇及其情感极性。例如,收集常见的古诗词情感词汇,并进行人工标注,确定其情感倾向(正向、负向、中性)。
  2. 情感分类模型选择与训练:采用深度学习模型对古诗词进行情感分类。选择双向长短期记忆网络(BiLSTM)结合注意力机制(Attention)构建古诗词情感分析模型。使用标注好的古诗词情感数据集对模型进行训练和优化。例如,选取部分已标注情感倾向的古诗词作为训练集与测试集,使用transformers库加载预训练的模型,在古诗词数据上进行进一步训练,通过反向传播算法调整模型参数,使模型能够学习到情感特征。使用准确率、召回率、F1值等指标对模型进行评估,根据评估结果,对模型进行优化,如调整模型的层数、神经元数量、学习率等参数,增加训练数据,采用数据增强技术等,以提高模型的性能。

(四)可视化实现

  1. 可视化工具选择:基于Python的图形库(如Pyecharts、D3.js等)与Web开发框架(如Flask、Django等),开发古诗词知识图谱与情感分析可视化系统。
  2. 可视化界面设计:实现知识图谱的可视化展示,用户可通过交互式界面查询特定诗词、作者或意象,查看其相关实体与关系,并以图形化方式呈现。同时,将情感分析结果以直观的图表(如柱状图、饼图、雷达图等)展示,帮助用户快速了解诗词的情感特征。例如,使用D3.js前端可视化库,通过定义节点和边的样式、布局方式等,将知识图谱以直观、交互式的方式展示出来。用户可以通过鼠标操作,如点击、拖动等,查看节点和边的详细信息,深入了解古诗词的结构和内涵。

四、实验与结果分析

(一)实验设置

  1. 数据集:自建数据集,整合《全唐诗》《全宋词》及古诗文网数据,构建包含一定数量诗词和情感标签的数据集。同时,采用“中华古诗词情感分析数据集”作为补充。
  2. 评估指标:对于情感分析模型,采用分类准确率、多标签分类能力和可解释性等指标进行评估。分类准确率在测试集上要求达到一定标准,多标签分类能力支持单首诗词包含多种情感的识别,可解释性通过SHAP值或LIME解释模型预测结果,提升可信度。对于知识图谱可视化系统,从知识图谱的完整性、准确性、可视化效果和用户体验等方面进行评估。

(二)实验结果

  1. 情感分析结果:经过训练和优化的深度学习模型在古诗词情感分类任务中取得了较好的性能。实验结果表明,模型在自建数据集和公开数据集上的分类准确率均达到了较高水平,多标签分类能力也表现良好,能够准确识别诗词中包含的多种情感。同时,通过可解释性分析,模型的预测结果具有一定的可信度。
  2. 可视化结果:开发的古诗词知识图谱与情感分析可视化系统能够直观地展示古诗词的知识结构和情感特征。用户可以通过交互式界面方便地查询和浏览古诗词信息,发现诗人与诗作之间的关联,了解诗词的情感分布和强度。例如,在教学场景中,教师可以通过知识图谱直观地展示某一诗人的创作历程和风格特点,帮助学生更好地理解古诗词。

五、讨论

(一)优势

  1. 文化传承与推广:通过知识图谱和可视化技术,将中华古诗词以更加生动、直观的方式展示出来,吸引更多人尤其是年轻人对古诗词的兴趣,促进中华优秀传统文化的传承和推广。
  2. 学术研究价值:为古诗词的研究提供新的方法和工具,帮助学者更全面、深入地理解古诗词的内涵和关系,推动古诗词研究领域的发展。例如,研究者可以通过知识图谱可视化工具,快速发现古诗词中的潜在规律和关系,如诗人之间的交往、诗词风格的演变、特定意象在不同诗词中的运用等。
  3. 教育应用:在教育领域,该研究成果可作为教学资源应用于语文教学,辅助教师讲解古诗词,提高学生的学习兴趣和理解能力,同时也可开发相关学习软件或平台,为学生提供个性化的学习体验。

(二)不足与改进方向

  1. 数据质量:可能存在数据不完整、不准确等问题。未来可以加强数据收集渠道的多样性,建立数据质量评估机制,对数据进行严格筛选和清洗。例如,与古籍研究机构合作获取独家数字化资源,确保数据的完整性和准确性。
  2. 模型性能:深度学习模型可能存在训练效果不佳、泛化能力不足等问题。可以采用预训练模型进行微调,结合领域知识进行优化,增加训练数据量。例如,利用大规模的古诗词语料库对预训练模型进行进一步训练,提高模型在古诗词领域的性能。
  3. 跨学科融合:古诗词研究涉及文学、语言学、历史学等多个学科,目前的研究在跨学科融合方面还存在不足。未来可以加强跨学科的合作与交流,推动古诗词研究的深入发展。例如,与文学领域的专家合作,共同研究古诗词的语义和情感表达;与历史学领域的专家合作,研究古诗词创作的历史背景和文化内涵。

六、结论

本文探讨了利用Python技术实现中华古诗词知识图谱可视化与情感分析的方法。通过数据采集与预处理、知识图谱构建、情感分析以及可视化的实现过程,构建了一个包含丰富实体和关系的中华古诗词知识图谱,并实现了情感分析结果的可视化展示。实验结果表明,相关方法在古诗词的研究、教学和传承方面具有重要的应用价值。未来,随着技术的不断发展和创新,Python在古诗词领域的应用将会更加广泛和深入,为中华古诗词文化的传承和弘扬做出更大的贡献。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值