温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
介绍资料
任务书:基于Python+PySpark+Hadoop的图书推荐系统开发
一、任务概述
本项目旨在开发一个基于Python(算法开发)、PySpark(分布式计算)和Hadoop(分布式存储)的图书推荐系统,解决传统单机推荐系统在数据规模扩大时面临的性能瓶颈问题。系统需支持千万级用户行为数据的实时处理与百万级图书的离线推荐,最终实现推荐准确率(Precision@10)≥65%、系统吞吐量≥1000 QPS的目标。
二、任务目标
2.1 功能目标
- 数据采集与存储
- 支持从日志文件、数据库(如MySQL)采集用户行为数据(点击、购买、评分)。
- 使用Hadoop HDFS存储原始数据与模型文件,支持PB级数据存储。
- 推荐算法实现
- 实现协同过滤(CF):基于用户-图书评分矩阵计算相似度。
- 实现基于内容的推荐(CB):提取图书分类、作者特征,通过TF-IDF向量化后计算内容相似度。
- 实现混合推荐:加权融合CF与CB结果(初始权重比0.6:0.4),通过A/B测试优化参数。
- 分布式计算与实时处理
- 使用PySpark完成数据清洗、特征提取、模型训练(ALS算法)。
- 通过PySpark Streaming实现近实时推荐(延迟≤2秒)。
- 服务接口与可视化
- 开发Flask API接口,支持前端调用推荐结果。
- 提供Web界面展示推荐列表、用户画像(年龄、兴趣标签)。
2.2 性能目标
指标 | 目标值 | 测试方法 |
---|---|---|
推荐准确率 | Precision@10≥65% | 在豆瓣图书数据集上交叉验证 |
系统吞吐量 | ≥1000 QPS | 使用JMeter模拟1000并发请求 |
推荐延迟 | ≤2秒 | 从用户行为采集到推荐结果返回 |
数据处理延迟 | 微批处理≤500ms | PySpark Streaming批次间隔监控 |
三、任务分解与分工
3.1 模块划分与责任人
模块 | 责任人 | 任务描述 |
---|---|---|
数据采集与存储 | 张三 | 开发日志采集脚本,配置Hadoop HDFS存储路径,实现数据分片存储(按日期分区)。 |
推荐算法开发 | 李四 | 实现CF、CB算法,优化混合推荐权重,编写PySpark代码。 |
分布式计算优化 | 王五 | 调整PySpark分区数、缓存策略,解决数据倾斜问题(如热门图书ID加盐)。 |
实时处理与API开发 | 赵六 | 配置PySpark Streaming,开发Flask API接口,实现推荐结果JSON格式返回。 |
测试与部署 | 孙七 | 编写JMeter测试脚本,部署Hadoop/PySpark集群,监控系统性能(Prometheus+Grafana)。 |
3.2 时间节点
阶段 | 时间 | 交付物 |
---|---|---|
需求分析与设计 | 第1-2周 | 《系统需求规格说明书》《数据库设计文档》 |
环境搭建 | 第3-4周 | Hadoop集群(3节点)、PySpark开发环境、Flask框架部署完成。 |
算法实现 | 第5-8周 | CF、CB、混合推荐算法的PySpark代码,单元测试通过率≥90%。 |
系统集成 | 第9-10周 | 数据流(Kafka→PySpark→HDFS)打通,Flask API可调用推荐结果。 |
测试与优化 | 第11-12周 | 性能测试报告、A/B测试结果、系统优化方案(如调整HDFS块大小至256MB)。 |
验收与交付 | 第13周 | 系统源代码、部署文档、用户手册、软件著作权申请材料。 |
四、技术实现方案
4.1 开发环境
- 操作系统:CentOS 7.6(64位)
- 编程语言:Python 3.8、Scala 2.12(PySpark底层依赖)
- 框架与工具:
- Hadoop 3.3.4(HDFS+YARN)
- PySpark 3.3.0(含MLlib库)
- Flask 2.2.2(API服务)
- Prometheus 2.40.0(监控)
4.2 核心代码示例
4.2.1 PySpark数据清洗
python
from pyspark.sql import SparkSession | |
from pyspark.sql.functions import col, when | |
spark = SparkSession.builder \ | |
.appName("BookRecommendation") \ | |
.getOrCreate() | |
# 读取HDFS中的用户行为日志 | |
raw_data = spark.read.json("hdfs://namenode:8020/raw_logs/user_actions/*.json") | |
# 数据清洗:过滤无效评分、填充缺失值 | |
cleaned_data = raw_data.filter( | |
(col("rating") >= 1) & (col("rating") <= 5) # 评分范围1-5 | |
).fillna( | |
{"user_age": 30} # 默认用户年龄30岁 | |
) | |
cleaned_data.write.parquet("hdfs://namenode:8020/cleaned_data/user_actions") |
4.2.2 PySpark ALS模型训练
python
from pyspark.ml.recommendation import ALS | |
from pyspark.sql import Row | |
# 加载清洗后的数据 | |
ratings = spark.read.parquet("hdfs://namenode:8020/cleaned_data/user_actions") | |
# 训练ALS模型 | |
als = ALS( | |
maxIter=10, | |
regParam=0.01, | |
userCol="user_id", | |
itemCol="book_id", | |
ratingCol="rating", | |
coldStartStrategy="drop" # 处理冷启动 | |
) | |
model = als.fit(ratings) | |
# 保存模型 | |
model.save("hdfs://namenode:8020/models/als_model") |
4.2.3 Flask API接口
python
from flask import Flask, request, jsonify | |
import pickle | |
import pyspark.sql.functions as F | |
app = Flask(__name__) | |
# 加载PySpark模型(需提前保存为pickle文件) | |
with open("als_model.pkl", "rb") as f: | |
model = pickle.load(f) | |
@app.route("/recommend", methods=["GET"]) | |
def recommend(): | |
user_id = request.args.get("user_id") | |
# 调用PySpark生成推荐列表(简化示例) | |
recommendations = model.recommendForAllUsers(10) # 实际需通过PySpark Session调用 | |
result = recommendations.filter(F.col("user_id") == user_id).collect() | |
return jsonify({"recommendations": [r["book_id"] for r in result]}) | |
if __name__ == "__main__": | |
app.run(host="0.0.0.0", port=5000) |
五、测试与验收标准
5.1 功能测试
- 推荐结果验证:随机抽取100个用户,检查推荐列表是否包含用户历史购买图书的相似书籍(相似度≥0.7)。
- 冷启动测试:模拟新用户(无历史行为)与新图书(无评分),验证系统能否返回合理推荐(如热门图书或内容匹配图书)。
5.2 性能测试
- 吞吐量测试:使用JMeter发送1000个并发请求,统计成功响应数(目标≥950个/秒)。
- 延迟测试:记录从请求发出到推荐结果返回的时间(P99延迟≤2秒)。
5.3 验收条件
- 系统通过全部功能测试用例。
- 性能指标达到任务书目标值。
- 提交完整的源代码、部署文档与测试报告。
六、风险评估与应对
风险 | 影响等级 | 应对措施 |
---|---|---|
Hadoop集群故障 | 高 | 部署3节点HDFS(3副本),配置HA(高可用)模式。 |
PySpark任务积压 | 中 | 动态调整Executor数量(根据负载自动扩容),优化分区数(spark.default.parallelism=200 )。 |
推荐算法准确率不足 | 高 | 引入深度学习模型(如Neural Collaborative Filtering)作为备选方案。 |
七、交付物清单
- 源代码:Python/PySpark代码、Flask API代码、配置文件(
spark-defaults.conf
)。 - 文档:
- 《系统需求规格说明书》
- 《数据库设计文档》
- 《部署与运维手册》
- 测试报告:功能测试用例、性能测试结果、A/B测试对比数据。
- 知识产权:软件著作权申请材料(含源代码截图、功能说明)。
项目负责人签字:__________________
日期:2023年XX月XX日
运行截图
推荐项目
上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)
项目案例
优势
1-项目均为博主学习开发自研,适合新手入门和学习使用
2-所有源码均一手开发,不是模版!不容易跟班里人重复!
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻