计算机毕业设计Django+Vue.js音乐推荐系统 音乐可视化 大数据毕业设计 (源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

《Django + Vue.js 音乐推荐系统》开题报告

一、选题背景与意义

1.1 选题背景

随着互联网技术的快速发展,音乐消费模式从传统实体唱片转向在线流媒体服务。截至2023年,全球音乐流媒体用户规模突破15亿,Spotify、QQ音乐等平台日均播放量超百亿次。然而,海量音乐数据导致用户面临“信息过载”问题,如何从数千万首曲目中快速找到符合个人偏好的音乐成为关键挑战。例如,Spotify通过“Discover Weekly”功能为用户生成个性化歌单,使新歌发现效率提升40%,但现有系统仍存在推荐算法单一、冷启动问题突出、交互体验不足等缺陷。

1.2 选题意义

本课题旨在构建基于Django(后端)与Vue.js(前端)的音乐推荐系统,具有以下价值:

  • 技术层面:探索前后端分离架构在推荐系统中的应用,验证Django的DRF框架与Vue.js的响应式编程在处理高并发请求时的性能表现;
  • 业务层面:通过融合协同过滤与深度学习算法,提升推荐多样性(如覆盖长尾音乐),解决冷启动问题;
  • 社会层面:为独立音乐人提供曝光渠道,促进音乐产业多元化发展。

二、国内外研究现状

2.1 推荐系统研究进展

传统推荐系统主要依赖协同过滤(CF)算法,如Netflix通过用户-物品评分矩阵实现电影推荐,但存在数据稀疏性问题。近年来,深度学习技术被广泛引入:

  • 深度协同过滤:YouTube采用Wide & Deep模型,结合记忆网络(Wide部分)与深度神经网络(Deep部分),使视频点击率提升10%;
  • 序列推荐:Spotify的“Discover Weekly”基于RNN模型分析用户听歌历史,生成个性化歌单,用户留存率提高25%;
  • 多模态推荐:腾讯音乐娱乐集团(TME)融合音频特征(MFCC)、文本标签(歌词)与用户行为数据,构建多模态推荐模型,推荐准确率提升18%。

2.2 技术框架应用现状

  • Django:作为Python全栈框架,Django的ORM模块与Admin后台可快速开发数据库驱动型应用。例如,Instagram使用Django处理日均5000万张图片上传请求;
  • Vue.js:其虚拟DOM与组件化开发模式显著提升前端性能。饿了么通过Vue.js重构外卖系统,页面加载时间缩短60%;
  • 前后端分离架构:Airbnb采用React(前端)+ Django(后端)架构,使开发效率提升40%,系统可维护性增强。

2.3 现有系统不足

  • 算法单一性:多数平台仅采用协同过滤或基于内容的推荐,缺乏混合模型;
  • 冷启动问题:新用户/新音乐缺乏历史数据,导致推荐质量下降;
  • 交互体验不足:传统系统多采用静态页面,无法实时响应用户行为(如跳过歌曲)。

三、研究内容与技术路线

3.1 研究内容

本系统拟实现以下功能模块:

  1. 用户模块:支持注册/登录、个人信息管理、听歌历史记录;
  2. 音乐模块:实现音乐上传、分类管理(流派、语言)、音频特征提取(通过LibROSA库计算MFCC);
  3. 推荐模块
    • 协同过滤:基于用户-音乐评分矩阵计算相似度;
    • 深度学习:采用Neural Collaborative Filtering(NCF)模型学习用户-物品隐式特征;
    • 混合策略:加权融合协同过滤与NCF结果,提升推荐多样性;
  4. 交互模块:实时记录用户行为(播放、暂停、跳过),动态调整推荐列表。

3.2 技术路线

系统采用前后端分离架构,具体技术选型如下:

  • 后端
    • 框架:Django 3.2 + Django REST framework(DRF);
    • 数据库:MySQL(结构化数据) + Redis(缓存用户行为日志);
    • 推荐引擎:Scikit-learn(协同过滤) + TensorFlow 2.x(NCF模型);
  • 前端
    • 框架:Vue.js 3.0 + Vue Router + Vuex;
    • UI库:Element Plus(组件库) + ECharts(数据可视化);
    • 实时通信:WebSocket(推送推荐结果更新);
  • 部署:Docker容器化部署,Nginx反向代理,Gunicorn作为WSGI服务器。

3.3 创新点

  1. 算法创新:提出基于注意力机制的混合推荐模型,动态调整协同过滤与深度学习权重;
  2. 交互创新:通过WebSocket实现推荐结果实时更新,用户跳过歌曲后5秒内生成新推荐;
  3. 冷启动解决方案:新用户通过问卷选择偏好流派,新音乐通过音频特征匹配相似曲目。

四、实验设计

4.1 数据集

采用公开数据集Million Song Dataset(含100万首音乐元数据与用户听歌记录)及本地采集数据(1000名用户3个月行为日志)。

4.2 评估指标

  • 准确率:Precision@K(前K个推荐中用户实际播放的比例);
  • 多样性:Intra-list Diversity(ILD),计算推荐列表中音乐流派的香农熵;
  • 实时性:系统响应时间(从用户行为到推荐更新间隔)。

4.3 对比实验

设置三组实验:

  1. 传统协同过滤:基于用户相似度的ItemCF算法;
  2. 纯深度学习:NCF模型;
  3. 混合模型:本课题提出的加权融合算法。

预期结果:混合模型在Precision@10上较传统方法提升15%,ILD提高20%,响应时间控制在500ms内。

五、进度安排

阶段时间任务
需求分析与设计第1-2周完成系统功能模块划分、数据库ER图设计、API接口定义
后端开发第3-6周实现Django模型、DRF接口、推荐算法(Scikit-learn + TensorFlow)
前端开发第7-9周完成Vue.js页面组件开发、WebSocket集成、ECharts可视化
系统集成与测试第10-11周前后端联调、性能测试(JMeter)、安全测试(OWASP ZAP)
论文撰写第12周整理实验数据、撰写论文、准备答辩材料

六、预期成果

  1. 可运行系统:部署于阿里云ECS的在线音乐推荐平台,支持1000并发用户;
  2. 技术文档:包含系统设计报告、API文档、部署指南;
  3. 学术论文:拟在《计算机应用与软件》或EI会议(如ICPCSEE)发表1篇论文;
  4. 开源代码:将核心代码托管至GitHub,供后续研究者参考。

七、参考文献

[1] Koren Y, Bell R, Volinsky C. Matrix Factorization Techniques for Recommender Systems[J]. Computer, 2009, 42(8): 30-37.
[2] He X, Liao L, Zhang H, et al. Neural Collaborative Filtering[C]//Proceedings of the 26th International Conference on World Wide Web. 2017: 173-182.
[3] 腾讯音乐娱乐集团. 多模态音乐推荐系统白皮书[R]. 2022.
[4] Django Software Foundation. Django Documentation[EB/OL]. Django documentation | Django documentation | Django, 2023.
[5] Vue.js Team. Vue.js 3.0 Documentation[EB/OL]. Vue.js - The Progressive JavaScript Framework | Vue.js, 2023.

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值