拓扑排序:对有向无环图的点进行排序,使得u->v的边在排序后u点始终排在v点前面
适用场景:学生培养计划的安排,例如学习数据结构必须先修完程序设计。
注意:有环图无法进行拓扑排序;拓扑排序的结果可能不唯一。
Kahn算法核心思想:
1.统计各个结点的入度;
2.删除入度为0的结点和其与其他点的边;
3.重复2的步骤,直到图中所有点都被处理或者一直有未处理且入度不为0的点(说明图中出现环状。
由于要删除点和边,实际上没有必要删除,我们可以借助栈来操作
首先我们要定义图的相关数据和入度数组indegree
int indegree[6]; //用于存放各个顶点的入度值
int g[6][6] = { //图的邻接矩阵,0表示顶点到顶点本身,1表示i到j间有边,-1则表示没有边
{0 ,1 ,-1,-1,-1,-1},
{-1,0 ,1 ,-1,-1,-1},
{-1,-1,0 ,1 ,-1,-1},
{-1,-1,-1,0 ,-1,-1},
{-1,1 ,-1,-1,0 ,1 },
{-1,-1,-1,1 ,-1,0 }
};
typedef struct ANode {
int adjvex; //边的邻接点编号
struct ANode* next; //指向下一条边的指针
}ArcNode; //边结点的类型
typedef struct Vnode {
ArcNode* firstarc; //指向第一个边结点
}VNode; //邻接表的头结点类型
typedef struct {
VNode adjlist[6]; //邻接表的头结点数组
int n, e; //顶点数和边数
}AdjGraph; //图的邻接表类型
其次,根据邻接矩阵创造邻接表并且求出各个点的入度值
void createGraph(AdjGraph*& G) {
G = (AdjGraph*)malloc(sizeof(AdjGraph));
G->e = 6;
G->n = 6;
for (int i = 0;i < 6;i++) {
G->adjlist[i].firstarc = NULL;
}
for (int i = 0;i < 6;i++) {
for (int j = 0;j < 6;j++) {
if (g[i][j] == 1) { //若各个顶点间有直接边
indegree[j]++; //记录各个点的入度
ArcNode* p = (ArcNode*)malloc(sizeof(ArcNode));
p->adjvex = j; //储存j作为i的邻接点
p->next = NULL;
p->next = G->adjlist[i].firstarc;
G->adjlist[i].firstarc = p;
}
}
}
}
然后接着进行拓扑排序
例如:
其邻接表为:
我们已经求出各个点的入度值indegree,其中数组的索引为点的编号,对应值为入度值
{0,2,1,2,0,1,2}
首先我们找到入度值为0的点,也就是点0和点4,将其进栈,栈的数据为{0,4}
取栈顶值 ,也就是4,删除点4,输出4,并出栈,栈中还有{0};
从点4开始遍历点4的邻接点,其第一点可能是1或者5(暂且先将5作为第一个点),删除4->5 的边,5的入度减一,判断5的入度是否为0,为0,将5进栈。
接着到4的邻接点1,删除4->1的边,1的入度减一,判断1的入度为1,不进栈
此时的栈的数据为{0,5},接着重复上述步骤,直到栈为空时。
其代码为:
void TopSort(AdjGraph* G) {
stack<int>s; //定义一个储存int类型的栈
for (int i = 0;i < 6;i++) {
if (indegree[i] == 0) { //找到一开始入度为0的结点,将其进栈
s.push(i);
}
}
while(!s.empty()){
int j=s.top(); //取头结点并出栈
s.pop();
printf("%d", j); //输出
ArcNode* p = G->adjlist[j].firstarc; //从入度为0的结点j开始
while (p != NULL) { //遍历其邻接点
int u = p->adjvex;
indegree[u]--; //由于j已被删去(实际上没有删去只是出栈),删去j到u的边,u的入度减一
if (indegree[u] == 0) { //如果u的入度为0,则将u进栈
s.push(u);
}
p = p->next;
}
}
}
完整代码为:
#include<iostream>
#include<stack>
using namespace std;
int indegree[6]; //用于存放各个顶点的入度值
int g[6][6] = { //图的邻接矩阵,0表示顶点到顶点本身,1表示i到j间有边,-1则表示没有边
{0 ,1 ,-1,-1,-1,-1},
{-1,0 ,1 ,-1,-1,-1},
{-1,-1,0 ,1 ,-1,-1},
{-1,-1,-1,0 ,-1,-1},
{-1,1 ,-1,-1,0 ,1 },
{-1,-1,-1,1 ,-1,0 }
};
typedef struct ANode {
int adjvex; //边的邻接点编号
struct ANode* next; //指向下一条边的指针
}ArcNode; //边结点的类型
typedef struct Vnode {
ArcNode* firstarc; //指向第一个边结点
}VNode; //邻接表的头结点类型
typedef struct {
VNode adjlist[6]; //邻接表的头结点数组
int n, e; //顶点数和边数
}AdjGraph; //图的邻接表类型
void createGraph(AdjGraph*& G) {
G = (AdjGraph*)malloc(sizeof(AdjGraph));
G->e = 6;
G->n = 6;
for (int i = 0;i < 6;i++) {
G->adjlist[i].firstarc = NULL;
}
for (int i = 0;i < 6;i++) {
for (int j = 0;j < 6;j++) {
if (g[i][j] == 1) { //若各个顶点间有直接边
indegree[j]++; //记录各个点的入度
ArcNode* p = (ArcNode*)malloc(sizeof(ArcNode));
p->adjvex = j; //储存j作为i的邻接点
p->next = NULL;
p->next = G->adjlist[i].firstarc;
G->adjlist[i].firstarc = p;
}
}
}
}
void TopSort(AdjGraph* G) {
stack<int>s; //定义一个储存int类型的栈
for (int i = 0;i < 6;i++) {
if (indegree[i] == 0) { //找到一开始入度为0的结点,将其进栈
s.push(i);
}
}
while(!s.empty()){
int j=s.top(); //取头结点并出栈
s.pop();
printf("%d", j); //输出
ArcNode* p = G->adjlist[j].firstarc; //从入度为0的结点j开始
while (p != NULL) { //遍历其邻接点
int u = p->adjvex;
indegree[u]--; //由于j已被删去(实际上没有删去只是出栈),删去j到u的边,u的入度减一
if (indegree[u] == 0) { //如果u的入度为0,则将u进栈
s.push(u);
}
p = p->next;
}
}
}
int main() {
AdjGraph* G;
createGraph(G);
TopSort(G);
return 0;
}
总结:拓扑排序Kahn核心就是不断的删除入度为0的点和其的出边,直到处理完所有结点为止
此篇文章用于给自己巩固知识点,如果帮助到大家也是非常荣幸,如果文章有错误,感谢批评和指出。