一、引言
在 Python 编程里,线程(Thread)和进程(Process)是实现并发与并行计算的关键工具,能有效提升程序执行效率与资源利用率。然而,实际项目应用中,因二者特性及 Python 运行环境(如 GIL,全局解释器锁 )等因素,会遭遇诸多问题。本文深入剖析这些问题,并给出应对方案。
二、Python 线程的问题与解决
(一)GIL 引发的性能瓶颈
Python 的全局解释器锁,限制了同一进程内多个线程并行执行 Python 字节码。在 CPU 密集型任务中,如大规模数据加密运算(像 RSA 加密算法实现 ),多线程无法真正利用多核 CPU 优势,线程切换还会带来额外开销,导致效率甚至低于单线程。
解决策略:
- 对于 CPU 密集型任务,优先考虑多进程,绕开 GIL 限制。例如使用
multiprocessing
模块,创建多个进程并行处理。 - 若需线程实现,可结合 C 扩展(如用 C 编写关键计算部分,通过 Python 调用 ),让计算逻辑在 GIL 外执行。
(二)线程同步与竞争条件
多线程共享进程资源,如全局变量、文件句柄等。操作共享资源时,若未正确同步,会出现竞争条件。比如多线程读写同一文件,可能使文件内容混乱;多线程修改同一全局计数器,结果可能与预期不符。
解决策略:
- 利用
threading.Lock
、threading.RLock
(可重入锁 )等同步原语。对共享资源操作前加锁,操作后释放,保证同一时间只有一个线程访问。示例:
python
import threading
counter = 0
lock = threading.Lock()
def increment():
global counte