时间序列(一)
时间序列是指按照时间顺序排列的一系列数据点或观测值。这些数据点通常是连续的,且在不同时间点上收集或记录得到。时间序列分析是一种统计方法,用于研究和预测时间序列数据的模式、趋势和周期性。
时间序列分析可以应用于多个领域,例如经济学、金融学、气象学、股票市场等。通过对时间序列数据进行分析和建模,我们可以揭示数据中隐藏的模式和规律,从而作出预测、制定决策或做出相关的推断。
常见的时间序列分析方法包括平滑法(如移动平均和指数平滑)、趋势分析、周期性分析、季节性分析、自回归移动平均模型(ARMA模型)和自回归积分滑动平均模型(ARIMA模型)等。
时间序列分析对于理解和解释时间数据的变化趋势、周期性以及未来走势具有重要意义,因此在实践中得到广泛应用。
基本概念
当我们谈论时间序列分析中的"差分"、"滞后差分"和"多步差分"时,我们通常是在谈论同一种基本概念,简单的来说就是比较一个时间序列在不同时间点的值。然而,这些术语的具体含义可能会根据上下文有所不同。让我为你详细解释一下:
(1)差分(Differencing):这是一种预处理技术,用于使非平稳时间序列变得平稳。在时间序列中进行一阶差分,就是将每个观察值与其前一步的观察值进行比较,然后取这两个观察值之间的差异。例如,如果我们有一个时间序列$ x1,x2,x3,\ldots,xn$,那么一阶差分序列将是 x 2 − x 1 , x 3 − x 2 , … , x n − x n − 1 x2-x1,x3-x2,\ldots,xn-xn-1 x2−x1,x3−x2,…,xn−xn−1。
(2)滞后差分(Lagged Differencing):这个术语和"差分"非常相似。当我们说"滞后"时,我们是在说比较一个观察值和其"前一步"或"几步前"的观察值。因此,“滞后一阶差分"实际上就是常规的一阶差分,因为我们比较的是每个观察值与其前一步的观察值。如果我们进行的是"滞后k阶差分”,那么我们比较的是每个观察值与其k步前的观察值。
(3)n阶差分(n-th Order Differencing):n阶差分是差分的一种更一般的形式。一阶差分是比较每个观察值与其前一步的观察值,二阶差分是对一阶差分序列进行再一次的差分(也就是比较一阶差分序列中的每个值与其前一步的值)。更一般地,n阶差分就是连续进行n次一阶差分。
(4)多步差分(Multi-step Differencing):这个术语可能根据上下文有不同的含义。它可能指的是n阶差分(即进行多次连续的一阶差分)。也可能指的是滞后差分,比如比较每个观察值与其几步前的观察值。
ARIMA(p,d,q)模型的参数选择
在 ARIMA(p, d, q) 模型中,p,d,q是什么:
p 代表 “自回归部分 (Autoregressive)”: 此描述了该模型中使用的观测值的滞后值(即前面 p 个期的值)。自回归模型的出发点是认为观测值是它前面的 p 个值的线性组合。具体的数学形式如下:
A R : Y t = c + φ 1 Y t − 1 + φ 2 Y t − 2 + … + φ p Y t − p + ξ t AR\text{:}Y_t=c+\varphi_1Y_{t-1}+\varphi_2Y_{t-2}+\ldots+\varphi_pY_{t-p}+\xi_t AR:Yt=c+φ1Yt−1+φ2Yt−2+…+φpYt−p+ξt
其中, ϵ t − 1 , ϵ t − 2 , … , ϵ t − q \epsilon_{t-1},\epsilon_{t-2},\ldots,\epsilon_{t-q} ϵt−1,ϵt−2,…,ϵt−q是模型参数,c 是常数,$\xi_t $是白噪声。这个方程的阶数 p 决定了模型回溯观测值的数量。
q 代表 “移动平均部分 (Moving Average)”:这部分描述了模型中使用的错误项的滞后值(即前面 q 个期的值)。移动平均模型是将当前值和过去的白噪声之间建立关系。具体的数学形式如下:
M A : Y t = μ + ϵ t + θ 1 ϵ t − 1 + θ 2 ϵ t − 2 + ⋯ + θ q ϵ t − q MA\colon Y_t=\mu+\epsilon_t+\theta_1\epsilon_{t-1}+\theta_2\epsilon_{t-2}+\cdots+\theta_q\epsilon_{t-q} MA:Yt=μ+ϵt+θ