[算法] 递归方程 减而治之 分而治之

本文根据清华大学邓俊辉老师课程《数据结构》总结,课程地址

递归 与 递归方程

从递推角度看,为求解数组 A 的求和问题 sum(A,n),需要

  • 递归求解规模为 n-1 的问题 sum(A,n-1)
  • 再累加上 A[n-1]

递推方程 看其复杂度,
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ T(n) &= T(n-1)…

求解过程
递归方程

复杂度计算

对于数组求和的问题,普通方法是写一个循环来解决,复杂度就是 O ( n ) O(n) O(n)

使用递归分析,可分解成很多子问题,每个平凡子问题的复杂度是 O ( 1 ) O(1) O(1) ,共 n n n 个过程。所以综合下来复杂度是 O ( n ) O(n) O(n)

复杂度

减而治之

Decrease-and-conquer,为求解一个大规模的问题,可以将其划分为两个子问题:其一平凡,另一规模缩减。分别求解子问题,得到原问题的解。
减而治之

分而治之

Divide-and-conquer,为求解一个大规模的问题,可以将其划分为若干(通常两个)子问题,规模大体相当,分别求解子问题。由子问题解,得到原问题的解。
分而治之


常见复杂度问题

常见