鸿蒙启航 | 搭建 HarmonyOS 开发环境来个 Hello World


2024年10月22日,华为公司正式发布全新一代操作系统鸿蒙Next(HarmonyOS NEXT),此次发布标志着华为在操作系统领域的重大进展,成为继苹果iOS和谷歌安卓之后的全球第三大移动操作系统。以下是鸿蒙Next的一些关键特点:

  1. 完全自主研发:鸿蒙Next实现了从系统底层到上层应用的全栈自研,不再依赖AOSP(Android Open Source Project)等外部开源代码。这意味着华为对整个系统的控制力更强,可以更好地优化性能、安全性和用户体验。

  2. 隐私安全升级:鸿蒙Next采用了自研的星盾安全架构,在数据保护和用户隐私方面进行了大幅度提升,确保了用户的个人信息更加安全。

  3. 跨设备互联:该系统支持手机、平板、汽车座舱等多种智能设备间的无缝连接与协作,增强了多场景下的用户体验。

  4. 技术创新:鸿蒙Next引入了包括物理渲染引擎在内的多项新技术,为用户提供更流畅、更沉浸式的视觉体验。例如,“心情盒子”功能允许用户通过摇晃手机来改变表情的情绪表达。

  5. AI及多媒体处理:新系统加强了人工智能技术的应用,比如AI语音修复等功能,并且提升了图形处理能力,为多媒体内容提供了更好的支持。

  6. 教育合作:华为已与中国超过300所高校建立合作关系,以加速技术研发和迭代速度,促进学术界与产业界的融合创新。

  7. 市场份额:截至发布时,支持鸿蒙系统的设备数量已经超过10亿台,鸿蒙在中国市场的份额位居前两名,显示出强劲的增长势头。

  8. 生态系统建设

03-30
### Swish-Gated Linear Unit (SwiGLU) 的定义 Swish-Gated Linear Unit (SwiGLU) 是一种结合了门控机制和激活函数的神经网络组件,广泛应用于自然语言处理和其他深度学习领域。它通过引入非线性和自适应加权的方式增强了模型表达能力[^4]。 具体来说,SwiGLU 可以被看作是一种特殊的门控单元形式,其中输入经过两个分支路径:一条路径应用 Swish 激活函数作为门控信号,另一条保持原始输入不变。最终输出由这两个分支的结果相乘得到: \[ \text{SwiGLU}(x) = (\sigma(W_s \cdot x + b_s) \odot W_g \cdot x + b_g) \] 在这里: - \(W_s\) 和 \(b_s\) 表示用于计算门控信号的权重矩阵和偏置项; - \(W_g\) 和 \(b_g\) 则表示用于缩放输入的权重矩阵和偏置项; - \(\sigma(x)\) 表示标准 Sigmoid 函数或其变种(如 Swish); - \(\odot\) 表示逐元素乘法操作。 这种设计允许模型动态调整不同特征的重要性,从而提升复杂模式的学习效率[^5]。 --- ### 实现细节 以下是基于 PyTorch 的 SwiGLU 实现代码片段: ```python import torch import torch.nn as nn class SwiGLU(nn.Module): def __init__(self, input_dim, output_dim): super(SwiGLU, self).__init__() self.linear_gate = nn.Linear(input_dim, output_dim) self.linear_main = nn.Linear(input_dim, output_dim) def forward(self, x): gate = torch.sigmoid(self.linear_gate(x)) # Gate signal using sigmoid/Swish main = self.linear_main(x) # Main transformation path return gate * main # Element-wise multiplication ``` 上述实现中,`linear_gate` 负责生成门控信号,而 `linear_main` 处理主要的数据流转换部分。两者的输出随后通过逐元素乘法组合在一起形成最终结果[^6]。 需要注意的是,在实际部署过程中可以根据需求替换掉默认的 Sigmoid 函数为其他更高效的替代品比如 SiLU 或 GELU 来进一步优化性能表现[^7]。 --- ### 使用场景 由于具备较强的灵活性以及良好的梯度传播特性,SwiGLU 特别适合于以下几种情况下的建模工作: 1. **序列建模**: 如 Transformer 架构中的前馈网络模块可以采用 SwiGLU 替代传统 ReLU/GeLU 层次结构来增强局部依赖关系捕捉能力。 2. **低资源环境**: 类似于预训练嵌入未能显著改善整体效果的小型数据集情境下,适当加入此类复杂的非线性变换有助于挖掘潜在规律[^8]。 3. **多任务联合训练框架内**, 当存在多个子任务共享底层表征空间时,利用 SwiGLU 提供额外自由度可以帮助平衡各目标间冲突并促进知识迁移过程顺利开展. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

集成显卡

码字不易,需要您的鼓励😄

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值