深入理解图论算法及其应用
1 图的基本概念
图论作为计算机科学和离散数学的一个重要分支,广泛应用于网络设计、社交网络分析、交通规划等领域。图是一种由顶点(节点)和边组成的抽象数据类型,用来表示对象之间的关系。图可以分为有向图和无向图,根据边是否有方向来区分。此外,图还可以根据边的权重属性分为加权图和非加权图。
1.1 图的定义
图 ( G ) 由顶点集合 ( V ) 和边集合 ( E ) 组成,记作 ( G = (V, E) )。顶点 ( V ) 是图中的基本元素,边 ( E ) 则是连接这些顶点的线段。对于无向图,边是没有方向的;而对于有向图,边是有方向的,即存在从一个顶点到另一个顶点的方向。
1.2 图的表示方法
图的表示方法主要有两种:邻接矩阵和邻接表。这两种表示方法各有优劣,选择哪种取决于具体应用场景。
1.2.1 邻接矩阵
邻接矩阵是一个二维数组,用来表示图中顶点之间的连接关系。如果图中有 ( n ) 个顶点,则邻接矩阵的大小为 ( n \times n )。对于无向图,矩阵是对称的;对于有向图,矩阵不一定对称。
v1 | v2 | v3 | |
---|---|---|---|
v1 | 0 | 1 | 0 |
v2 | 1 < |