感知机
缺点:只能处理线性问题,感知机无法解决异或问题
在这里偏置就像线性模型的常数项,加入偏置模型的表达能力增强,而激活函数就像示性函数,可以模拟神经元的兴奋和抑制,当大于等于0就输出1。
多层感知机MLP
前馈网络的层数是指权重的层数
多个单层感知机按前馈结构,前馈结构就是层只与相邻层连接,不跨越连接,就是多层感知机
激活函数
逻辑斯蒂函数
双曲正切函数
线性整流单元ReLU
一般让所有的隐含层的激活函数相同,输出层的激活函数需根据任务的需求选择,二分类可以选择逻辑斯蒂回归,多分类用softmax函数
MLP相比单层感知机的表达能力提升,关键在于非线性激活函数
可以证明任意一个R上的连续函数都可以由MLP来拟合,而对其非线性的激活函数的形式要求很少,也称作普适逼近定理。
非线性对提升模型的表达能力很重要,其实因为非线性变换相当于提升了数据的维度,维度提升的好处就在于低维数据不可分的问题可以在高维中可分
import torch # PyTorch库
import torch.nn as nn # PyTorch中与神经网络相关的工具
from torch.nn.init import normal_ # 正态分布初始化
torch_activation_dict = {
'identity': lambda x: x,
'sigmoid': torch.sigmoid,
'tanh': torch.tanh,
'relu': torch.relu
}
# 定义MLP类,基于PyTorch的自定义模块通常都继承nn.Module
# 继承后,只需要实现forward函数,进行前向传播
# 反向传播与梯度计算均由PyTorch自动完成
class MLP_torch(nn.Module):
def __init__(
self,
layer_sizes, # 包含每层大小的list
use_bias=True,
activation='relu',
out_activation='identity'
):
super().__init__() # 初始化父类
self.activation = torch_activation_dict[activation]
self.out_activation = torch_activation_dict[out_activation]
self.layers = nn.ModuleList() # ModuleList以列表方式存储PyTorch模块
num_in = layer_sizes[0]
for num_out in layer_sizes[1:]:
# 创建全连接层
self.layers.append(nn.Linear(num_in, num_out, bias=use_bias))
# 正态分布初始化,采用与前面手动实现时相同的方式