attention注意力机制

注意力机制模拟人脑焦点,用于机器翻译等任务,通过计算输入与输出的匹配度确定权重。HAN是一种层级注意力网络,利用双向RNN和注意力机制对文本进行分词、句级别的理解,进而实现文本分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.attention干什么的

attention模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但是在我们深入仔细地观察时,其实眼睛聚焦的就只有很小的一块,这个时候人的大脑主要关注在这一小块图案上,也就是说这个时候人脑对整幅图的关注并不是均衡的,是有一定的权重区分的。这就是深度学习里的Attention Model的核心思想。

2.attention原理

在这里插入图片描述
我们在翻译machine的时候主要想关心机器而不是学习。
因为attention其实就是一个当前的输入与输出的匹配度,在上文中就是h1和z0的匹配度,其中的match为计算这两个向量的匹配度的模块,出来的α10即为由match算出来的相似度。(这里的相似度可以用很多比如余弦相似度)

3.HAN原理

在这里插入图片描述
层级“注意力”网络的网络结构如图1所示,网络可以被看作为两部分,第一部分为词“注意”部分,另一部分为句“注意”部分。整个网络通过将一个句子分割为几部分(例如可以用“,”讲一句话分为几个小句子),对于每部分,都使用双向RNN结合“注意力”机制将小句子映射为一个向量,然后对于映射得到的一组序列向量,我们再通过一层双向RNN结合“注意力”机制实现对文本的分类。
简而言之,就是一个文本而言,重要的词构成句子,重要的句子构成文本,那么就可以找出文本的意思了,那么就可以进行分类

4.attention模型进行分类

 def _attention(self, query, attn_states):
    conv2d = nn_ops.conv2d
    reduce_sum = math_ops.reduce_sum
    softmax = nn_ops.softmax
    tanh = math_ops.tanh

    with vs.variable_scope
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值