Optimal Substructure DEMO(without memorization: overlapping subproblems)

# quote from 'introduction to computation and programming       
# using Python, revised, MIT press 
class Item(object):  
    def __init__(self, n, v, w):  
        self.name = n  
        self.value = float(v)  
        self.weight = float(w)  
    def getName(self):  
        return self.name  
    def getValue(self):  
        return self.value  
    def getWeight(self):  
        return self.weight  
    def __str__(self):  
        result = '<' + self.name + ', ' + str(self.value)\
                 + ', ' + str(self.weight) + '>'  
        return result  
        
def maxVal(toConsider, avail):
    """Assumes toConsider a list of items, avail a weight
       Returns a tuple of the total weight of a solution to the
         0/1 knapsack problem and the items of that solution"""    
    #simple case
    if toConsider == [] or avail == 0:
        result = (0, ())
    #recursive decomposition
    elif toConsider[0].getWeight() > avail:
        #Explore right branch only
        result = maxVal(toConsider[1:], avail)
    else:
        nextItem = toConsider[0]
        #Explore left branch
        withVal, withToTake = maxVal(toConsider[1:],
                                    avail - nextItem.getWeight())
        withVal += nextItem.getValue()
        #Explore right branch
        withoutVal, withoutToTake = maxVal(toConsider[1:], avail)
        #Choose better branch 
        if withVal > withoutVal:
            result = (withVal, withToTake + (nextItem,))
        else:
            result = (withoutVal, withoutToTake)
    return result
    
def smallTest():
    names = ['a', 'b', 'c', 'd']
    vals = [6, 7, 8, 9]
    weights = [3, 3, 2, 5]
    Items = []
    for i in range(len(vals)):
        Items.append(Item(names[i], vals[i], weights[i]))
    val, taken = maxVal(Items, 5)
    for item in taken:
        print item
    print 'Total value of items taken =', val
    
smallTest()

%run "C:\Users\Administrator\test.py"
<c, 8.0, 2.0>
<b, 7.0, 3.0>
Total value of items taken = 15.0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值