【YOLO】YOLOv8怎么调参及数据增强策略(持续更新)

# use Adam
lr0: 0.001  # initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
lrf: 0.01  # final learning rate (lr0 * lrf)
momentum: 0.937  # SGD momentum/Adam beta1
weight_decay: 0.0005  # optimizer weight decay 5e-4
warmup_epochs: 3.0  # warmup epochs (fractions ok)
warmup_momentum: 0.8  # warmup initial momentum
warmup_bias_lr: 0.1  # warmup initial bias lr
box: 7.5  # box loss gain
cls: 0.5  # cls loss gain (scale with pixels)
dfl: 1.5  # dfl loss gain
fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
label_smoothing: 0.0  # label smoothing (fraction)
nbs: 64  # nominal batch size
hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4  # image HSV-Value augmentation (fraction)
degrees: 0.0  # image rotation (+/- deg)
translate: 0.1  # image translation (+/- fraction)
scale: 0.5  # image scale (+/- gain)
shear: 0.0  # image shear (+/- deg)
### YOLO模型参数调整的最佳实践 为了提升YOLO模型的性能,可以通过以下几个方面进行参数调整: #### 1. 数据增强策略 数据增强可以显著改善模型的泛化能力。常见的增强方法包括随机裁剪、翻转、颜色抖动以及MixUp和CutOut等技术[^1]。通过增加训练样本的变化多样性,可以使模型更好地适应不同的场景。 #### 2. 学习率调度器的选择 学习率是影响模型收敛速度的重要因素之一。通常可以选择余弦退火(Cosine Annealing)、阶梯式衰减(Step Decay)或者自定义的学习率调度器。合理设置初始学习率及其变化规律有助于加速训练过程并达到更高的精度水平[^2]。 #### 3. Batch Size 的设定 Batch size 对于GPU内存占用及梯度更新频率有着直接影响。较大的batch size 可能会带来更稳定的梯度估计,但也可能导致过拟合现象;而较小的 batch size 则更容易找到全局最优解,不过可能会牺牲一定的计算效率。因此,在实际应用中需根据硬件条件权衡选择合适的大小。 #### 4. Anchor Box 的重新聚类分析 默认情况下,YOLO 使用预设好的 anchor boxes 来匹配真实框位置关系。然而针对特定领域内的图像分布特征,可能需要重新生成一组更适合当前任务需求的新anchors 。这一步骤可通过K-means算法完成,并依据IoU指标评估效果改进程度。 ```python from sklearn.cluster import KMeans def generate_anchors(boxes, num_clusters=9): kmeans = KMeans(n_clusters=num_clusters).fit(boxes) anchors = sorted(kmeans.cluster_centers_, key=lambda x: x[0]*x[1]) return np.array(anchors) # Example usage with bounding box dimensions (width,height) box_dimensions = [[w,h], ... ] # List of all ground truth bbox sizes from dataset new_anchors = generate_anchors(box_dimensions) print(new_anchors) ``` #### 5. NMS阈值调节 非极大抑制(NMS)用于去除冗余检测结果中的重复边界框。降低NMS IoU阈值能够减少误报数量但同时也增加了漏检风险;反之则相反。应基于具体应用场景测试不同取值下的表现差异来决定最佳配置。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值