01
简介
在当今LLM时代,大模型的效果已经取得了长足的进步,逐渐成为业务流程中的重要部分,因此对性能进行评估变得至关重要,由于目前LLM推理都需要比较高级的GPU,使得LLM推理成本高,因此在不同使用场景下优化推理就很有必要。对于提供公共推理服务,比如openai等来说,提高吞吐率优先级比较高,而在一些专用的业务场景,则对首包延迟和整体请求延迟有着较高要求。
目前业界已经开发了各种各样的LLM推理引擎,如VLLM,LLMDeploy,huggingface(text-generation-inference), DeepSpeed-Inference,以及大量的商业化API,本文介绍LLM性能主要指标,进行性能压测,并通过wandb进行压测结果对比。
02
LLM推理关键指标以及影响
- Throughput
总的吞吐(output tokens/seconds),对于LLM Serving重要,可以提高总的服务能力。
- Time to First Token(TTFT)
在prefill阶段后返回的第一个token的时间,在stream输出模式下,对体验影响大,越小用户等待返回第一个token时间越小,体验越好。
- Time per output token
生成每个token的时间,影响体验
- Latency
处理完整请求用时。
- QPS
每秒处理完成的请求数。
03
性能测试工具
为了支持各种服务API以及开源LLM推理性能,评估是否满足生产需求,我们提供一套简单可扩展的工具,支持LLM各项指标,详细可以参考eval-scope项目中的性能perf工具说明: https://github.com/modelscope/eval-scope/tree/main/llmuses/perf
04
环境信息