leetcode算法之二分查找

这篇博客探讨了在LeetCode中应用的二分查找算法。作者指出,虽然畏惧算法,但意识到作为开发者需要不断学习。文章详细阐述了二分查找的前提条件,即有序数组且无重复元素,并强调了明确边界条件对实现正确循环的重要性。同时,作者计划回顾位运算和计算机基础知识,如内存中数据的存储方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LeetCode算法之二分查找

前言

对于算法一直抱有恐惧感,觉得没有算法我也写了这么多代码,但周遭的环境让我感觉目前身为一名浅薄知识的敲代码的人,是需要去不断的汲取一些知识,所以就像大学学习英语单词一样,从Abandon开始,从查找开始。

二分查找

  • 二分查找的前提:1.数组必须是有序的 2.数组中不存在重复元素
  • 二分查找的边界:在写代码之前要清楚边界,才能确定循环条件到底是while(left <= right),还是while(left <
    right),到底是middle = right -1,还是 middle = right

所以会以两种情况来写

var search = function(nums, target) {
    let l = 0, r = nums.length - 1;//定义区间为[left, right]
    while(l <= r)//当 left = right时,区间[left, right]依然有效,所以使用 <=
    {
        let mid = parseInt(l + (r - l) / 2);//防止溢出,这里注意再js中 a/b是有小数位的,所以需要使用parseInt
        //let mid = l + (r -1) >> 2  在这里发现使用为运算反而会不保留小数位,更加方便
        if(nums[mid] === target) return mid;//找到目标值,返回mid
        l = nums[mid] < target ? mid + 1 : l;//当时nums[mid] < target成立,可以确定目标在右区间,因此缩小区间[mid + 1, right]
        r = nums[mid] < target ? r : mid - 1;//当时nums[mid] < target不成立,可以确定目标在左区间,因此缩小区间[left, mid - 1]        
    }
    return -1;
};

第二种情况

var search = function(nums, target) {
    let l = 0, r = nums.length - 1;
    while(l < r)
    {
        //let mid = parseInt(l + (r - l) / 2);
        let mid = l + ((r - l) >> 1);
        if(nums[mid] === target) 
            return mid;
        l = nums[mid] < target ? mid + 1 : l;
        r = nums[mid] < target ? r : mid;        
    }
    return -1;
};

这个算法写完,感觉对于基础的位运算需要再次复习一下,再往下又想到了计算机基础中,数据在内存中如何存储也需要复习一下

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值