Halcon九点及旋转标定流程

本文详细介绍了Halcon的XY轴九点标定及旋转轴标定过程,用于机器视觉中的精确定位。在XY轴标定中,通过仿射变换获取图像与世界坐标的转换矩阵。旋转轴标定则关注于获取旋转中心,通过计算不同旋转角度下物体特征点的偏移,结合旋转角度,推导出∆x和∆y,实现定位补偿。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

参考文章:剖析Halcon 9点标定旋转中心标定与使用_william9987的博客-CSDN博客_halcon旋转标定

 

一、XY轴九点标定:

使用仿射变换:

夹具夹取产品或者标定块,选取一个特征,开始进行标定

X轴、Y轴移动一个位置,记录轴的物理坐标:(Qx1,Qy1)

提取图像中对应特征点,图像像素坐标:(Px1,Py1)

运动第N位置,记录下点位轴轴坐标(QxN,QyN),t提取像素坐标:(PxN,PyN)

使用vector_to_hom_mat2d (Px, Py, Qx , Qy, HomMat2D)得到图像坐标和世界坐标的转换关系矩阵。这种简单的标定方法不能消除镜头和相机畸变。

 

*创建空数组用来存放模板在图像坐标系的位置
ImageXPix:=[]
ImageYPix:=[]
*****************************
*确定好相机移动的九个物理坐标数组
WorldX:=[8,8,8,0,0,0,-8,-8,-8]
WorldY:=[-8,0,8,8,0,-8,-8,0,8]

*开始标定
i:=0
* 打开相机
open_framegrabber ('GigEVision', 0, 0, 0, 0, 0, 0, 'default', -1, 'default', -1, 'false', 'default', 'ccd1', 0, -1, AcqHandle)
grab_image_start (AcqHandle, -1)
*采集图像  获取9个像素坐标
for i:=1 to 9 by 1   
     grab_image (Image, AcqHandle) 
    *用第一张图片创建模板
    if(i=1)
        disp_message(3600, '创建模板区域,右键确定', 'window', 12, 12, 'red', 'false')
        draw_region(Region, 3600)
        reduce_domain(Image, Region, ImageReduced)
        create_shape_model(ImageReduced, 'auto', rad(-180), rad(360), 'auto', 'auto', 'use_polarity', 'auto', 'auto', ModelID)        
    endif

    find_shape_model(Image, ModelID,  rad(-180), rad(360), 0.5, 1, 0.5, 'least_squares', 0, 0.9, 
<think>好的,我现在需要帮助用户解决关于Halcon 23版本中九点标定旋转中心的详细代码实现的问题。首先,我得回忆一下九点标定的基本原理,以及Halcon的相关函数。用户之前提到了联合C#开发和多线程处理,所以在代码示例中可能需要包含C#的锁机制,如引用[1]中的lock关键字。 九点标定通常涉及图像坐标到世界坐标的转换,需要至少四个点来计算仿射变换矩阵,但实际常用九个点以提高精度。Halcon中的create_calib_data函数和set_calib_data_calib_object可能被用来创建标定数据。然后,find_marks_and_pose函数用于检测标定板上的标记点并估计姿态。接下来,calibrate_cameras进行相机标定,获取内外参数。标定完成后,使用hom_mat2d_invert反转变换矩阵,以便坐标转换。 旋转中心的标定可能需要多个不同角度的图像,通过计算各点的坐标变化来确定旋转中心的位置。在Halcon中,可能需要使用vector_angle_to_rigid和area_center等函数来计算旋转中心和姿态。 用户需要详细的代码实现,所以应该分步骤解释,并提供C#的示例代码,包括Halcon算子的调用和必要的线程安全措施,如lock语句。同时,需要确保代码中的Halcon函数适用于23版本,可能需要查阅最新的文档确认函数是否有变化。 此外,用户引用的资料提到九点标定的理论基础,如坐标系理论,所以在解释过程中应简要说明原理,但重点放在代码实现上。还要注意用户之前的问题涉及C#开发,所以代码示例应使用C#和Halcon的混合编程,确保语法正确,并处理多线程安全的问题。 最后,生成相关问题时要围绕九点标定的优化、误差分析、旋转中心验证等,帮助用户深入理解。需要避免使用Markdown格式,保持自然的中文口语化,同时符合技术准确性。</think>根据Halcon 23版本特性,九点标定旋转中心标定的实现可分为以下步骤(含C#混合开发代码): ### 一、九点标定核心流程 1. **创建标定数据模型** ```csharp lock (halconLock) { HOperatorSet.CreateCalibData("calibration_object", 1, 1, out calibDataID); HOperatorSet.SetCalibDataCalibObject(calibDataID, 0, "calib_obj", new HTuple(0.01)); // 设置标定板参数 } ``` 2. **采集多角度标定图像** ```csharp for (int i=0; i<9; i++) { HOperatorSet.FindMarksAndPose(ho_Image, ho_Marks, "circular_dots", 0.03, new HTuple(0.05), new HTuple(30), out row, out column, out pose); HOperatorSet.SetCalibDataObservPose(calibDataID, 0, i, pose); } ``` 3. **执行标定计算** ```csharp HTuple error; HOperatorSet.CalibrateCameras(calibDataID, out error); HOperatorSet.GetCalibData(calibDataID, "camera", 0, "params", out cameraParams); ``` ### 二、旋转中心标定关键代码 1. **多角度旋转标定** ```csharp HTuple centerX = new HTuple(); HTuple centerY = new HTuple(); for (int angle=0; angle<360; angle+=30) { // 旋转机构到指定角度 HOperatorSet.FindMarksAndPose(...); // 检测特征点 HOperatorSet.AreaCenter(ho_Region, out area, out y, out x); centerX = centerX.TupleConcat(x); centerY = centerY.TupleConcat(y); } ``` 2. **最小二乘法求解** $$ R = \frac{\sum_{i=1}^n (x_i^2 + y_i^2 - \bar{x}x_i - \bar{y}y_i)}{\sum_{i=1}^n (x_i^2 + y_i^2)} $$ ```csharp HOperatorSet.VectorAngleToRigid(centerY, centerX, angles, centerY, centerX, new HTuple(0).TupleRad(), out homMat2D); HOperatorSet.AffineTransPoint2d(homMat2D, 0, 0, out rotCenterY, out rotCenterX); ``` ### 三、坐标转换实现 ```csharp public PointF ImageToWorld(double imgX, double imgY) { lock (halconLock) { HTuple worldX, worldY; HOperatorSet.AffineTransPoint2d(homMat2D, imgY, imgX, out worldY, out worldX); return new PointF((float)worldX, (float)worldY); } } ``` **注意事项**: 1. 需保证标定板平面与运动平面平行度误差<0.1°[^2] 2. 建议使用$3\times3$的九点布局,且覆盖视野的80%以上区域 3. 旋转中心标定需重复验证3次以上,标准差应小于0.5像素
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

stephon_100

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值