Ubuntu18.04+2070s+TF2.x环境,单卡训练PointNet++实战

本文详细介绍了在Ubuntu18.04系统上配置TF2.x版本环境,处理Python版本差异,编译PointNet+TF2.x的自定义动态库,下载和预处理训练数据,以及实际模型训练过程中的问题解决方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 编译tf_ops文件夹下的三个动态库

该文件夹下定义了一些pointnet++模型中需要使用的cuda核函数,如FPS(最远点采样)、grouping等,所以在训练模型前,需要先编译这些自定义的op

具体操作
在每一个子文件夹中,运行sh tf_xxx.sh (每个子文件夹中不一样,tab一下就出来了)。

有可能需要根据自己的环境,对sh文件进行修改,例如我的环境中,cuda、tensorflow的版本、安装位置和作者都不一样,因此进行了一些头文件、库文件的路径修改,如下:

#/bin/bash
/usr/local/cuda/bin/nvcc tf_sampling_g.cu -o tf_sampling_g.cu.o -c -O2 -DGOOGLE_CUDA=1 -x cu -Xcompiler -fPIC
# 原命令 /usr/local/cuda-8.0/bin/nvcc tf_sampling_g.cu -o tf_sampling_g.cu.o -c -O2 -DGOOGLE_CUDA=1 -x cu -Xcompiler -fPIC

# TF1.2
g++ -std=c++11 tf_sampling.cpp tf_sampling_g.cu.o -o tf_sampling_so.so -shared -fPIC -I /home/hikai/.local/lib/python3.6
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

steptoward

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值