GNN消息传递中的残差连接有助于提高性能,但它们极大地增强了GNN对异常节点特征的脆弱性。
神经系统传递框架。本文首先对具有代表性的GNN模型在具有异常特征的图上的行为进行了实证研究。实验发现:(1)特征聚合可以提高对异常特征的恢复能力,但过多的聚合可能会影响正常和异常特征的性能;(2)残差连接有助于GNN从正常特征的更多层次中受益,同时使GNN对异常特征更脆弱。之后,提供可能的解释,从图拉普拉斯平滑的角度来理解这些观察到的现象。我们的分析表明,特征聚合和剩余连接之间可能存在内在的张力,这导致正常特征和异常特征之间的性能权衡。我们目的是设计新的GNN,在很大程度上保持正常功能的性能的同时,具有更强的异常功能恢复能力。
图拉普拉斯矩阵GNNs中常用的特征聚合矩阵
,相应拉普拉斯矩阵
实验发现:1.特征聚合可以提高对异常特征的恢复能力,但过多的聚合可能会影响正常和异常节点的性能
2.残余连接有助于GNN从具有正常功能的节点的更多层中受益,同时使GNN对异常功能更加脆弱
使用拉普拉斯平滑对发现进行理解:
1.特征聚合作为拉普拉斯平滑
特征聚合它可以解释为拉普拉斯平滑问题的一个梯度下降步骤
其中di就是节点vi的度。等式(2)可由导出,其中初始化