具有自适应残差的图神经网络

研究发现,图神经网络(GNN)在处理异常特征时,特征聚合能增强异常恢复但过度聚合可能损害性能,而残差连接虽有助于正常特征学习,却增加对异常特征的敏感性。文章通过拉普拉斯平滑视角解释这一现象,并提出自适应消息传递(AMP)方案,旨在在保持正常功能性能的同时增强对异常特征的恢复能力,实现特征聚合与残差连接之间的自适应平衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GNN消息传递中的残差连接有助于提高性能,但它们极大地增强了GNN对异常节点特征的脆弱性。

神经系统传递框架。本文首先对具有代表性的GNN模型在具有异常特征的图上的行为进行了实证研究。实验发现:(1)特征聚合可以提高对异常特征的恢复能力,但过多的聚合可能会影响正常和异常特征的性能;(2)残差连接有助于GNN从正常特征的更多层次中受益,同时使GNN对异常特征更脆弱。之后,提供可能的解释,从图拉普拉斯平滑的角度来理解这些观察到的现象。我们的分析表明,特征聚合和剩余连接之间可能存在内在的张力,这导致正常特征和异常特征之间的性能权衡。我们目的是设计新的GNN,在很大程度上保持正常功能的性能的同时,具有更强的异常功能恢复能力。 

图拉普拉斯矩阵GNNs中常用的特征聚合矩阵,相应拉普拉斯矩阵

实验发现:1.特征聚合可以提高对异常特征的恢复能力,但过多的聚合可能会影响正常和异常节点的性能

2.残余连接有助于GNN从具有正常功能的节点的更多层中受益,同时使GNN对异常功能更加脆弱

使用拉普拉斯平滑对发现进行理解:

1.特征聚合作为拉普拉斯平滑 

特征聚合它可以解释为拉普拉斯平滑问题的一个梯度下降步骤

其中di就是节点vi的度。等式(2)可由导出,其中初始化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值