nnetsauce开源程序是使用随机和准随机(神经)网络(目前为Python和R)进行统计/机器学习

​一、软件介绍

文末提供程序和源码下载

      nnetsauce开源程序是使用随机和准随机(神经)网络(目前为Python和R)进行统计/机器学习

二、Installing (for Python and R)安装(适用于 Python 和 R)

Python 蟒

  • 1st method: by using pip at the command line for the stable version
    第 1 种方法:在稳定版的命令行中使用 pip
pip install nnetsauce
  • 2nd method: using conda (Linux and macOS only for now)
    第二种方法:使用 conda (目前仅限 Linux 和 macOS)
conda install -c conda-forge nnetsauce 
  • 3rd method: from Github, for the development version
    第 3 种方法:来自 Github,用于开发版本
pip install git+https://github.com/Techtonique/nnetsauce.git

or

git clone https://github.com/Techtonique/nnetsauce.git
cd nnetsauce
make install

R

From GitHub 来自 GitHub

remotes::install_github("Techtonique/nnetsauce_r") # the repo is in this organization

From R-universe 来自 R-universe

install.packages('nnetsauce', repos = c('https://techtonique.r-universe.dev',
'https://cloud.r-project.org'))

General rule for using the package in R: object accesses with .'s are replaced by $'s. R Examples can be found in the package, once installed, by typing (in R console):
在 R 中使用包的一般规则:带有 . ' 的对象访问将替换为 $ 's。安装后,可以通过键入 (在 R 控制台中) 在包中找到 R 示例:

?nnetsauce::MultitaskClassifier

三、Quick start 快速开始

There are multiple examples here on GitHub, plus notebooks (including R Markdown notebooks).
GitHub 上有多个示例,以及笔记本(包括 R Markdown 笔记本)。

You can also read these blog posts.
您还可以阅读这些博客文章。

Lazy Deep (quasi-randomized neural) networks example
Lazy Deep (准随机神经网络) 网络示例

!pip install nnetsauce --upgrade
import os
import nnetsauce as ns
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from time import time

data = load_breast_cancer()
X = data.data
y= data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state = 123)

clf = ns.LazyDeepClassifier(n_layers=3, verbose=0, ignore_warnings=True)
start = time()
models, predictions = clf.fit(X_train, X_test, y_train, y_test)
print(f"\n\n Elapsed: {time()-start} seconds \n")

model_dictionary = clf.provide_models(X_train, X_test, y_train, y_test)

display(models)

软件下载

夸克网盘分享

本文信息来源于GitHub作者地址:https://github.com/Techtonique/nnetsauce

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值