(二)Linux系统安装显卡驱动+cuda+cudnn+torch+torchvision(GPU-Pytorch)

本文介绍了在Linux系统中检查和安装NVIDIA显卡驱动的方法,查询显卡型号,以及如何安装CUDA、cudnn并配合Anaconda和PyTorch/Torchvision的版本管理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、查看是否已安装显卡驱动

二、查询显卡型号并安装

1.查询显卡命令

2.根据显卡型号下载显卡驱动

3.执行下载的驱动包

 三、安装cuda,在Anaconda中安装或者安装到本机

1.下载cuda版本

2.在本机安装cuda

四、安装cudnn

 1.下载cudnn版本

 2.cudnn文件解压

  3.cudnn文件复制到cuda下面

五、验证cuda是否安装完成

         1.设置环境变量

2.验证nvcc -V 

3.若未生效,则重新设置软连接或者重启电脑

六、安装完基础环境后,可以装Miniconda了


其他相关链接

  (一)Linux 系统安装Anaconda及环境配置https://blog.csdn.net/su_xiao_wei/article/details/133895606

(二)Linux系统安装显卡驱动+cuda+cudnn(GPU-Pytorch)https://blog.csdn.net/su_xiao_wei/article/details/133954722

(三)以下载安装包方式安装torch和torchvisionhttps://blog.csdn.net/su_xiao_wei/article/details/133970785

(四)Miniconda 安装+新建环境+迁移环境https://blog.csdn.net/su_xiao_wei/article/details/146046087

一、查看是否已安装显卡驱动

nvidia-smi: 如果你使用的是NVIDIA显卡,这个命令可人显示显卡的状态和驱动程序的版本总之,Linux系统中查看显卡驱动的方法有很多种,可以根据自己的需求选择适合自己的方法相关问题。

命令行输入:

nvidia-smi

1.下面显示的是未安装显卡

sxw@sxw-server:~$ nvidia-smi
Command 'nvidia-smi' not found, but can be installed with:
sudo apt install nvidia-utils-390         # version 390.157-0ubuntu0.22.04.2, or
sudo apt install nvidia-utils-418-server  # version 418.226.00-0ubuntu5~0.22.04.1
sudo apt install nvidia-utils-450-server  # version 450.248.02-0ubuntu0.22.04.1
sudo apt install nvidia-utils-470         # version 470.199.02-0ubuntu0.22.04.1
sudo apt install nvidia-utils-470-server  # version 470.199.02-0ubuntu0.22.04.1
sudo apt install nvidia-utils-525         # version 525.125.06-0ubuntu0.22.04.1
sudo apt install nvidia-utils-525-server  # version 525.125.06-0ubuntu0.22.04.1
sudo apt install nvidia-utils-535         # version 535.113.01-0ubuntu0.22.04.1
sudo apt install nvidia-utils-535-server  # version 535.104.12-0ubuntu0.22.04.1
sudo apt install nvidia-utils-510         # version 510.60.02-0ubuntu1
sudo apt install nvidia-utils-510-server  # version 510.47.03-0ubuntu3

 2.下面是已安装显卡

二、查询显卡型号并安装

1.查询显卡命令

 spci -vnn grep VGA: 这个命令可以列出所有的显卡备,并显示它们的详细信息,包括驱动程序的名称和版本。

命令行输入:lspci -vnn | grep VGA

user@user-server:~$ lspci -vnn | grep VGA
01:00.0 VGA compatible controller [0300]: Red Hat, Inc. Virtio GPU [1af4:1050] (rev 01) (prog-if 00 [VGA controller])

2.根据显卡型号下载显卡驱动

下载链接:Official Drivers | NVIDIA

英伟达新页面

3.执行下载的驱动包

bash NVIDIA-Linux-x86_64-550.144.03.run

(1)警告:NVIDIA内核模块“NVIDIA -uvm”似乎已经加载到内核中。这可能是因为它正在使用中(例如,由X服务器,CUDA程序或NVIDIA Persistence Daemon),但如果您的内核配置不支持模块卸载,也可能发生这种情况。一些完整性检查,英伟达安装程序
当NVIDIA内核模块正在运行时,检测潜在安装问题的执行是不可能的。

(2)您要继续安装并跳过完整性检查吗?如果没有,请中止安装,然后关闭任何可能正在使用NVIDIA GPU的程序,然后再尝试再次安装。

 (3)警告:继续安装,尽管存在加载的NVIDIA内核模块。将不执行某些完整性检查。强烈建议您重新启动您的电脑安装完成后。如果重新启动计算机后安装不成功,您可以运行‘ NVIDIA -uninstall ’来尝试删除NVIDIA
司机。

 (4)系统上似乎已经安装了驱动程序(版本:535.54.03)。作为安装此驱动程序(版本:550.144.03)的一部分,现有的驱动程序将被卸载。
你确定要继续吗?

(5)检测到安装NVIDIA驱动程序的替代方法。(这通常是由您的分销商提供的软件包。)通过这种方法安装的驱动程序可以更好地集成与您的系统比驱动程序安装nvidia-installer。

请查看此替代安装方法的维护人员提供的消息,并决定如何继续:

Ubuntu提供的NVIDIA驱动程序可以通过启动“软件和更新”应用程序,并从“附加驱动程序”选项卡中选择NVIDIA驱动程序来安装。 

(6)警告:nvidia-installer被迫猜测X库路径‘/usr/lib’和X模块路径‘/usr/lib/xorg/modules’;无法从系统中查询这些路径。如果X不能找到NVIDIA X驱动模块,请安装‘ pkg-config ’实用程序和X.Org SDK/开发包,并重新安装驱动程序。

 (7)安装NVIDIA的32位兼容库?

我选择了安装,如果不需要也可以不装!

(8) 警告:此NVIDIA驱动程序包包含Vulkan组件,但在此系统上未检测到Vulkan ICD加载程序。NVIDIA Vulkan ICD没有加载程序将无法运行。大多数
发行版打包了Vulkan加载器;尝试安装“vulkan-loader”、“vulkan-icd-loader”或“libvulkan1”包。

 (9)您想在DKMS中注册内核模块源吗?这将允许DKMS在稍后更改内核时自动构建新模块。

(10)警告:无法确定安装libglvnd EGL供应商库配置文件的路径。检查是否安装了pkg-config和libglvnd开发库,或者使用——glvnd-egl-config-path指定路径。 

 (11)检测到多个用于重建initramfs的工具。您想使用哪个工具?

可以先选择不需要。以后用的再装

 (12)列出检测到的initramfs内容的工具不止一个。您想使用哪个工具?

 (13)无法确定initramfs中是否存在NVIDIA内核模块。initramfs中现有的NVIDIA内核模块,如果有,可能会干扰新安装的NVIDIA内核模块。

(14) 安装完成

 (15)警告:由于安装程序检测到以下情况,强烈建议您在退出安装程序后重新启动计算机:

*在安装过程中加载了现有的NVIDIA内核模块,并且可能仍然加载。

如果您在没有重新启动的情况下继续使用计算机,则在重新启动或重新加载NVIDIA之前,可能无法启动使用NVIDIA GPU的新程序内核模块。

(16)输入nvidia-smi:查看显卡信息

(17)Failed to initialize NVML: Driver/library version mismatch
NVML library version: 550.144 

 三、安装cuda,在Anaconda中安装或者安装到本机

1.下载cuda版本

链接:https://developer.nvidia.com/cuda-toolkit-archive

提示:尽可能安装新版本,可能后续torch更新的时候不再兼容老版本,新版本还能用的稍微久一些。

选择对应的配置,下面可以复制到命令行进行安装。 

2.在本机安装cuda

bash cuda_12.4.0_550.54.14_linux.run

(1)输入accept 

(2)使用空格键,取消其他的只留第二个“CUDA Toolkit 12.4” ,然后选择install,Enter继续。

(3)更新链接,选择yes

(4)安装完成

四、安装cudnn

 1.下载cudnn版本

链接:cuDNN Archive | NVIDIA Developer

 

 2.cudnn文件解压

tar -xvf cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz # 解压

  3.cudnn文件复制到cuda下面

注意:是复制到cuda文件下,不是cuda-12.4!因为cuda可以多装几个版本,而所有的都是连接到cuda的,所以cudnn直接复制到cuda下面就可以。

sudo cp include/cudnn*    /usr/local/cuda/include
sudo cp lib/libcudnn*    /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*   /usr/local/cuda/lib64/libcudnn*

查看安装版本

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

 显示

五、验证cuda是否安装完成

 1.设置环境变量

vim ~/.bashrc

  进入文件编辑,在最后面加入下面两行

export PATH=$PATH:/usr/local/cuda/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64

 按esc,输入【:wq】;或者输入【:wq! 】

更新环境变量,生效

source ~/.bashrc

2.验证nvcc -V 

nvcc -V 或者 nvcc --version

3.若未生效,则重新设置软连接或者重启电脑

步骤1: 查看当前软链接

cd /usr/local/
ls -l

  步骤2 :删掉现有的软链接

sudo rm /usr/local/cuda

 步骤3:将软链接指向要使用的CUDA版本

sudo ln -s /usr/local/cuda-12.4 /usr/local/cuda

注意:添加环境变量的时候我们并没有按照当时提示中写的具体的加入具体的CUDA版本型号,而是使用通用的cuda。

这样的好处是,可以安装多个cuda版本,使用/usr/local/cuda的软连接指向不同的CUDA版本 ,所以这里不指定版本型号,那么今后切换CUDA的时候不需要修改环境变量,只需要更改软连接就好了。

再次验证nvcc -V ,版本就是12.4。如果显示不是新的显卡版本则重启下电脑后再查看。

nvcc -V 或者 nvcc --version

六、安装完基础环境后,可以装Miniconda了

可参考:(四)Linux Miniconda 安装+换源+新建环境+迁移环境_miniconda迁移环境-CSDN博客

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SuSuStarSmile

共同成长,一起进步,顶峰相见!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值