MMOE核心代码块

本文介绍了一个基于TensorFlow实现的MMoE(Multiple Experts with Multiple Objective functions)多任务学习层的具体代码。该层包含多个专家网络与门网络,能够通过门控机制为每个任务分配不同的专家权重,实现多任务间的资源共享。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

class MMoE_Layer(tf.keras.layers.Layer):
    def __init__(self,expert_dim,n_expert,n_task):
        super(MMoE_Layer, self).__init__()
        self.n_task = n_task
        self.expert_layer = [Dense(expert_dim,activation = 'relu') for i in range(n_expert)]
        self.gate_layers = [Dense(n_expert,activation = 'softmax') for i in range(n_task)]
    def call(self,x):
        # 构建多个专家网络
        E_net = [expert(x) for expert in self.expert_layer]
        E_net = Concatenate(axis = 1)([e[:,tf.newaxis,:] for e in E_net]) # 维度 (bs,n_expert,n_dims)
        # 构建多个门网络
        gate_net = [gate(x) for gate in self.gate_layers]     # 维度 n_task个(bs,n_expert)
        # towers计算:对应的门网络乘上所有的专家网络
        towers = []
        for i in range(self.n_task):
            g = tf.expand_dims(gate_net[i],axis = -1)  # 维度(bs,n_expert,1)
            _tower = tf.matmul(E_net, g,transpose_a=True)
            towers.append(Flatten()(_tower))           # 维度(bs,expert_dim)
        return towers

核心代码块

参考:【推荐系统多任务学习MTL】MMoE论文精读笔记(含代码实现)_苏学算法的博客-CSDN博客_mmoe代码

### MMOE算法简介 多门控专家混合模型(MMoE, Multi-gate Mixture-of-Experts)是一种用于解决多任务学习问题的有效方法。它通过共享底层特征表示并允许不同任务之间相互协作来提升整体性能[^1]。 以下是基于 TensorFlow 实现的一个简单 MMoE 算法代码案例: ```python import tensorflow as tf from tensorflow.keras.layers import Input, Dense, Lambda from tensorflow.keras.models import Model def mmoe_model(num_experts=8, num_tasks=2, input_dim=100, expert_units=64, task_units=32): # 输入层 inputs = Input(shape=(input_dim,)) # Experts 层 experts = [] for _ in range(num_experts): expert_out = Dense(expert_units, activation='relu')(inputs) experts.append(expert_out) # Gates 和 Tasks 层 outputs = [] for i in range(num_tasks): gate_output = Dense(num_experts, activation='softmax', name=f'gate_{i}')(inputs) # 将 Gate 的输出与对应的 Expert 结合起来 expanded_gate = Lambda(lambda x: tf.expand_dims(x, axis=-1))(gate_output) weighted_experts = [Lambda(lambda x: x[0] * x[1])([expanded_gate[:, j], experts[j]]) for j in range(num_experts)] aggregated_expert = Lambda(lambda x: tf.reduce_sum(x, axis=1))(weighted_experts) # Task-specific 输出 task_output = Dense(task_units, activation='relu')(aggregated_expert) final_output = Dense(1, activation='sigmoid', name=f'task_{i}_output')(task_output) outputs.append(final_output) # 构建模型 model = Model(inputs=inputs, outputs=outputs) return model # 创建模型实例 model = mmoe_model() model.summary() ``` 上述代码定义了一个简单的 MMoE 模型结构,其中包含了多个专家网络和针对每个任务的独立门控机制。该实现支持自定义参数设置,例如专家数量、任务数量以及各隐藏层单元数等[^2]。 ### 关键点解析 - **Expert Layer**: 所有任务共享一组专家网络,这些网络负责提取通用特征。 - **Gate Mechanism**: 对于每一个具体任务而言,其对应的一组权重决定了哪些专家对该任务更重要。 - **Task-Specific Output Layers**: 不同的任务可以拥有自己独特的输出形式,比如回归或者分类问题中的激活函数差异。 此架构特别适合处理存在关联性的多种预测目标场景,在推荐系统等领域有着广泛的应用价值[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值