【三维目标检测】Complex-Yolov4详解(一): 数据处理

本文介绍了基于投影的三维深度学习算法Complex-YOLOv4,重点讲解了数据处理,包括数据目录结构、数据处理步骤、数据可视化,并提供了Mini KITTI数据集的介绍和下载链接。内容涵盖激光雷达点云转换、标签处理、鸟瞰图(BEV)生成以及数据增强等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文为博主原创文章,未经博主允许不得转载。
本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。

        前面分别介绍了基于点云的三维深度学习算法PointNet、PointNet++,和基于体素的三维深度学习算法VoxelNet。本节将开始介绍基于投影的三维深度学习算法Complex-Yolov4。三维投影算法主要思想是用激光雷达点云的鸟瞰图(BEV)和前视图(FV)作为模型输入,将三维点云转换为二维图片,早期工作开始于2017年的MV3D。

        激光雷达点云的鸟瞰图和前视图的详细介绍请参考:点云鸟瞰图BEV原理与可视化_Coding的叶子的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Coding的叶子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值