机器学习:波士顿房价预测案例

一、线性回归API

sklearn.linear_model.LinearRegression(fit_intercept=True)

  • 通过正规方程优化
  • 参数:fit_intercept,是否计算偏置
  • 属性:LinearRegression.coef_ (回归系数) LinearRegression.intercept_(偏置)

sklearn.linear_model.SGDRegressor(loss=“squared_loss”, fit_intercept=True, learning_rate =‘constant’, eta0=0.01)

  • 参数:loss(损失函数类型),fit_intercept(是否计算偏置),learning_rate (学习率),eta0(eta是η的读音,eta和η均是学习率代表字符,0表示初始,eta和0合在一起就是初始学习率)
  • 属性:SGDRegressor.coef_ (回归系数)SGDRegressor.intercept_ (偏置)

二、实操

(一)案例背景介绍

在这里插入图片描述
在这里插入图片描述
(二)案例分析

回归当中的数据大小不一致,是否会导致结果影响较大。所以需要做标准化处理。

  • 数据分割与标准化处理
  • 回归预测
  • 线性回归的算法效果评估

(三)回归性能评估

均方误差(Mean Squared Error, MSE)评价机制:

MSE=1m∑i=1m(yi−y^)2\Large MSE = \frac{1}{m}\sum_{i=1}^{m}(y^i-\hat{y})^2MSE=m1i=1m(yiy^)2

sklearn中的API:sklearn.metrics.mean_squared_error(y_true, y_pred)

  • 均方误差回归损失
  • y_true:真实值
  • y_pred:预测值
  • return:浮点数结果

(四)代码实现

# 0.导包
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression,SGDRegressor
from sklearn.metrics import mean_squared_error

# 1.加载数据
boston = load_boston()
# print(boston)

# 2.数据集划分
x_train,x_test,y_train,y_test =train_test_split(boston.data,boston.target,test_size=0.2,random_state=22)

# 3.标准化
process=StandardScaler()
x_train=process.fit_transform(x_train)
x_test=process.transform(x_test)

# 4.模型训练
# 4.1 实例化
# model =LinearRegression(fit_intercept=True)    #正规方程
model = SGDRegressor(learning_rate='constant',eta0=0.01)    #坡度下降
# 4.2 训练模型
model.fit(x_train,y_train)

# print(model.coef_)
# print(model.intercept_)
# 5.预测
y_predict=model.predict(x_test)

print(y_predict)

# 6.模型评估

print(mean_squared_error(y_test,y_predict))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值