大模型增量微调的各种方法

本文概述了大模型增量微调的发展,主要介绍了添加式(如适配器和提示微调)、指定式(如仅优化特定层)和重参数化(如LoRA)三种方法。这些方法通过高效地调整部分参数,实现了在保持模型结构不变的情况下提升性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大模型增量微调发展至今,已经涌现出一系列方法,尽管这些方法可能有不同的模型结构和训练策略,但它们都秉承参数高效的基本原则。根据具体的训练策略,可以将增量微调分为三大类:添加式方法、指定式方法和重参数化方法。

添加式方法会在模型中引入本身不存在的参数,并且只训练额外引入的这部分参数而保持其他参数不变;指定式方法则是指定模型中一部分特定的参数可训练,而保持其他参数不变;重参数化方法稍有不同,它是将模型的适配过程(或者是参数的变化)重新转化为一个参数高效的形式,如低维或者低秩的形式。

一、添加式方法

添加式增量微调方法是在大模型中添加额外的参数,但这些参数的位置和结构可能会有所不同。

1、适配器微调

适配器微调(adapter-tuning)是增量微调的开创性工作。这种方法的核心思想是在大模型中插入轻量级的神经网络模块,即适配器。在下游适配的过程中,仅对这些适配器的参数进行优化,其他参数保持不变。具体而言,一个适配器包括一个下投影线性层、一个非线性激活层和一个上投影线性层。适配器微调首次证明了仅调整0.5%~8%的参数即可达到与全参数微调相当的效果。在此基础上,适配器微调又衍生出了一系列的变体,如将适配器的参数复杂度从O(kr)降低到O(d+r)的Compacter方法,以及将适配器移出模型本身在模型之外进行单独优化的梯侧调整(Ladder

<think>嗯,用户问的是大模型微调有几种方法。首先,我得确定大模型指的是像BERT、GPT这样的预训练语言模型。微调方法有很多种,我需要回忆一下常见的几种,比如全参数微调、部分参数微调、适配器方法等等。 用户可能是刚接触这个领域,可能需要了解不同方法的优缺点以及适用场景。比如全参数微调虽然效果好,但计算成本高;而像LoRA这样的方法可以节省资源。可能需要分清楚这些方法的区别,帮助用户选择适合的。 还要注意用户是否有特定的应用场景,比如是在资源有限的情况下,还是追求最佳性能。但用户没提到具体场景,所以需要全面覆盖各种方法,并简要说明它们的适用情况。 另外,得确保回答的结构清晰,可能分点列出每种方法,包括原理和优缺点。同时要使用中文,避免专业术语过多,必要时解释一下。比如适配器方法是什么,如何插入到模型中。 还要检查是否有遗漏的方法,比如Prompt Tuning、Prefix-Tuning,这些最近比较流行的方法也需要包括进去。可能还需要提到多任务学习下的微调策略,虽然这可能属于应用层面。 需要确保每个方法的描述准确,比如LoRA是通过低秩矩阵来近似参数更新,而Adapter是在模型中插入小模块。同时,注意不要混淆不同方法,比如别把Adapter和LoRA混为一谈。 最后,总结一下不同方法的选择依据,比如计算资源、数据量、任务需求等,帮助用户根据实际情况做出决策。确保回答逻辑清晰,层次分明,用户能够一步步理解各种微调方法的特点。</think>大模型微调(Fine-tuning)是指基于预训练的大模型(如BERT、GPT等),通过少量领域或任务相关数据进一步调整模型参数,使其适应特定任务需求。以下是常见的几种微调方法及其特点: --- ### **1. 全参数微调(Full Fine-tuning)** - **原理**:更新预训练模型的所有参数。 - **适用场景**:任务数据充足、计算资源丰富时。 - **优点**:充分利用模型能力,通常效果最佳。 - **缺点**:计算成本高,容易过拟合小数据集。 - **示例代码**: ```python model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased") optimizer = AdamW(model.parameters(), lr=5e-5) # 更新所有参数 ``` --- ### **2. 部分参数微调(Partial Fine-tuning)** - **原理**:仅微调模型的顶层(如分类层)或部分层(如最后几层Transformer)。 - **适用场景**:数据量较少或资源受限时。 - **优点**:节省计算资源,降低过拟合风险。 - **缺点**:可能无法充分挖掘模型潜力。 - **示例**: ```python # 冻结除分类层外的所有参数 for param in model.base_model.parameters(): param.requires_grad = False ``` --- ### **3. 适配器微调(Adapter Tuning)** - **原理**:在模型每一层插入小型可训练模块(Adapter),冻结原始参数,仅训练Adapter。 - **适用场景**:需要轻量级调整、多任务适配。 - **优点**:参数高效,易于扩展多任务。 - **缺点**:增加模型推理时间。 - **结构示意图**: ```plaintext [输入] → [预训练层] → [Adapter模块] → [输出] ``` --- ### **4. 前缀微调(Prefix Tuning)** - **原理**:在输入序列前添加可学习的“前缀向量”,引导模型生成特定输出。 - **适用场景**:生成式任务(如文本生成、对话系统)。 - **优点**:不修改模型原始参数,灵活性高。 - **缺点**:需设计合适的前缀长度和初始化策略。 - **示意图**: ```plaintext [可训练前缀] + [输入文本] → [模型生成结果] ``` --- ### **5. LoRA(Low-Rank Adaptation)** - **原理**:通过低秩矩阵分解,在原始权重矩阵旁添加低秩增量矩阵,仅训练增量部分。 - **适用场景**:资源有限但需高效微调- **优点**:参数效率极高,几乎不增加推理耗时。 - **缺点**:需选择适配的秩(rank)和模块。 - **公式**: $$W_{\text{更新}} = W_{\text{原始}} + \Delta W, \quad \Delta W = A \cdot B \quad (A \in \mathbb{R}^{d \times r}, B \in \mathbb{R}^{r \times d})$$ --- ### **6. 提示微调(Prompt Tuning)** - **原理**:通过设计或学习特定的“提示词”(Prompt),引导模型输出预期结果。 - **适用场景**:少样本或零样本学习。 - **优点**:无需修改模型参数,依赖数据少。 - **缺点**:提示设计对效果影响大。 - **示例**: ```plaintext 输入:"[X] 这部电影很棒。情感:积极" 输出:"[X] 这个产品很差。情感:[MASK]" ``` --- ### **选择方法的依据** | **方法** | **参数量** | **计算成本** | **适用数据量** | **典型场景** | |-------------------|------------|--------------|----------------|----------------------| | 全参数微调 | 高 | 高 | 大 | 通用任务 | | 适配器/LoRA | 低 | 中 | 中/小 | 多任务、资源受限 | | 前缀/Prompt | 极低 | 低 | 极小 | 少样本、生成式任务 | --- ### **总结** - **资源充足时**:优先全参数微调- **资源受限时**:选择Adapter、LoRA或Prompt Tuning。 - **生成任务**:尝试Prefix Tuning或Prompt Tuning。 - **多任务场景**:适配器微调更具扩展性。 可根据任务需求、数据规模和硬件条件灵活选择或组合上述方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值