Artificial Intelligence
文章平均质量分 80
Artificial Intelligence
summer_west_fish
本科毕业深圳大学,拥有Java开发10年的经验。 拥有Devops、敏捷和项目管理多年的经验,并且获得PMP、ACP和DOP等相关证书。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
凯文·凯利《2049:未来10000天的可能》
2049:未来10000天的可能》不是一本危言耸听的科技预言书,而是一份积极、理性、可参与的未来路线图。凯文·凯利告诉我们:未来不是注定的,而是由我们今天的行动共同塑造的。不是机器统治人类,而是“人+机器”协同进化。根据预测,列出你未来需要掌握的能力:如提问能力、人机协作、数据素养、创造力等。当你开始用AI助理、思考镜像世界、关注脑机接口时,你已经在通往2049的路上。○ 关键洞察:我们不必制造“像人”的AI,而应拥抱“不像人”的智能。○ 数据透明是必然趋势,隐私不再是“隐藏”,而是“控制权”。原创 2025-11-03 21:44:02 · 968 阅读 · 0 评论 -
贝叶斯公式
它描述了在观测到新信息后如何更新关于某个事件的概率分布。贝叶斯公式的一般形式如下:其中:P(A∣B) 表示在给定观测到事件 B 后,事件 A 发生的条件概率,也被称为后验概率。P(B∣A) 表示在事件 A 已经发生的前提下,事件 B 发生的条件概率,也被称为似然度。P(A) 表示事件 A 发生的先验概率,即在观测到任何新信息之前,我们对事件 A 发生的初始估计。P(B) 表示事件 B 发生的概率。原创 2023-08-20 22:27:27 · 6571 阅读 · 0 评论 -
Main Problems Solved by Machine Learning
机器学习主要解决三类任务:分类(输出离散类别,如图像识别)、回归(预测连续值,如保险定价)和聚类(基于相似性分组数据,如图片搜索)。分类与回归属于预测任务,区别在于输出类型(离散vs连续)。原创 2025-09-05 17:33:05 · 391 阅读 · 0 评论 -
人工智能研究的各个学派
于对智能产生根源的理解不同形成了三大学派。原创 2024-03-10 22:45:55 · 6719 阅读 · 0 评论 -
状态空间的定义
每一个状态在状态空间中都是唯一的,可以用状态向量来表示。通过定义系统的状态、状态空间和状态转移关系,我们可以更好地理解和分析系统在不同时刻的行为,并在控制、决策、规划等问题中应用这一框架。是一种用于描述和分析系统的方法,它包括系统的状态、状态之间的转移关系以及与状态相关的行为。状态空间可以用图形的方式表示,其中每个节点代表一个状态,边表示状态之间的转移关系。状态转移关系定义了在系统操作或外部影响下,系统从一个状态转移到另一个状态的规律。状态转移描述了系统从一个状态到另一个状态的演变过程。原创 2023-12-05 22:18:58 · 1486 阅读 · 0 评论 -
AGI = 大模型 + 知识图谱 + 强化学习
大模型通常指的是参数数量庞大的机器学习模型,特别是深度学习模型。这些模型在训练时需要大量的计算资源和数据。例如,GPT-3(Generative Pre-trained Transformer 3)是一个大型的自然语言处理模型,拥有数十亿的参数。原创 2023-12-05 21:54:02 · 2220 阅读 · 0 评论 -
朴素贝叶斯算法
在朴素贝叶斯算法中,它是指在已知一个样本的特征向量的情况下,该样本属于某个类别的概率,通常用 P(X|C)表示,其中 X 表示特征向量,C 是类别。在朴素贝叶斯算法中,它是指在已知一个样本的特征向量后,该样本属于某个类别的概率,通常用 P(C|X)表示,其中 X 表示特征向量,C 是类别。记事件A发生的概率为P(A),事件B发生的概率为P(B),则在B事件发生的前提下,A事件发生的概率即为条件概率,记为P(A|B),读作“在B条件下A的概率”。在分类问题中,需要根据已知的特征来预测未知数据的类别。原创 2023-12-01 11:35:26 · 1436 阅读 · 0 评论 -
LLM能力与应用全解析
经过几年时间的发展,大语言模型(LLM)已经从新兴技术发展为主流技术。而以大模型为核心技术的产品将迎来全新迭代。大模型除了聊天机器人应用外,能否在其他领域产生应用价值?在回答这个问题前,需要弄清大模型的核心能力在哪?与这些核心能力关联的应用有哪些?1、LLM能力解析2、LLM技术分析3、LLM案例实践。原创 2023-11-28 17:25:17 · 1635 阅读 · 0 评论 -
NLP/Natural Language Processing
自然语言处理( Natural Language Processing, NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学于一体的科学。因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,所以它与语言学的研究有着密切的联系,但又有重要的区别。自然语言处理并不是一般地研究自然语言,而在于研制能有效地实现自然语言通信的计算机系统,特别是其中的软件系统。因而它是计算机科学的一部分。原创 2023-11-28 15:57:33 · 1346 阅读 · 0 评论 -
LLM大语言模型
大语言模型(英文:Large Language Model,缩写LLM),也称大型语言模型,是一种人工智能模型,旨在理解和生成人类语言。它们在大量的文本数据上进行训练,可以执行广泛的任务,包括文本总结、翻译、情感分析等等。LLM的特点是规模庞大,包含数十亿的参数,帮助它们学习语言数据中的复杂模式。这些模型通常基于深度学习架构,如转化器,这有助于它们在各种NLP任务上取得令人印象深刻的表现。原创 2023-11-28 14:50:47 · 1602 阅读 · 0 评论 -
神经网络的分类
前馈神经⽹络(feedforward neural network)是⼀种简单的神经⽹络,也被称为多层感知机(multi-layer perceptron,简称MLP),其中不同的神经元属于不同的层,由输⼊层 - 隐藏层 - 输出层构成,信号从输⼊层往输出层单向传递,中间⽆反馈,其⽬的是为了拟合某个函数,由⼀个有向⽆环图表⽰,如下:前馈神经⽹络中包含激活函数(sigmoid函数、tanh函数等)、损失函数(均⽅差损失函数、交叉熵损失函数等)、优化算法(BP算法)等。等。原创 2023-11-27 15:48:03 · 2214 阅读 · 0 评论 -
什么是神经网络?
神经网络(Artificial Neural Networks):人工神经网络的简称,。神经网络是一门重要机器学习技术,它是目前最火热的研究方向—深度学习之基础。下面我们从 “人造” 神经网络的起点-神经元开始讲起,沿着神经网络的“树突”,一步步来到神经网络的世界。一个神经元通常具有多个树突,主要用来接受传入信息;而轴突只有一条,轴突尾端有许多轴突末梢可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。这个连接的位置在生物学上叫做 “突触”。原创 2023-11-27 15:20:01 · 1312 阅读 · 1 评论 -
RPA/Robotic Process Automation
这里的机器人是一个虚拟概念,并不需要实体机器人,即可作为一个流程执行的主体,在一条完整流程内可以按照实际的业务逻辑进行自动化操作。RPA较为典型的例子就是网络数据爬取,通过爬虫程序从网页上面根据爬虫规则自动获取固定格式的信息数据,这极大提高获取数据的速度。网络数据爬取只要规则设置正确,极少会出现差错的地方,数据的质量也相对较高。近几年与业务流程化和业财一体化相关的话题热度不减,同时ERP(Enterprise Resource Planning)系统的广泛应用也为财会RPA应用提供了衍生基础。原创 2023-11-27 10:41:46 · 1400 阅读 · 0 评论 -
ChatGPT3 Transformer 的多模态全能语言模型
研究人员正在不断改进这些模型的性能,并探索它们在各种应用中的潜在用途,如视觉问答、多模态翻译、多模态推理等。然而,这一领域具有巨大的潜力,可以应用于多种跨模态的应用,如多模态文本生成、多模态情感分析、多模态问题回答等。"Transformer 的多模态全能语言模型" 指的是一种融合了多种输入模态(如文本、图像、声音等)的语言模型,具有广泛的应用能力,可以理解和生成多种类型的信息。:Transformer中的注意力机制在多模态模型中也可以使用,以便模型可以动态关注不同模态的信息,根据任务需要分配不同的权重。原创 2023-09-09 21:50:55 · 688 阅读 · 0 评论 -
AI模型训练参数
AI模型训练参数是指在机器学习或深度学习模型中需要经过训练来确定的权重和偏置的数值。这些参数用于模型的预测和决策过程,它们是模型的核心组成部分。因此,参数的数量越多,模型越有可能捕获复杂的数据特征。:在资源受限的情况下,减少参数数量可以降低模型的存储和计算成本,使其更易于部署和运行。较大数量的参数通常意味着较复杂的模型,而较小数量的参数则表示较简单的模型。:较小数量的参数通常意味着更快的训练速度,因为需要更新和优化的参数更少。:更多的参数意味着需要更多的存储空间来保存这些参数的值。原创 2023-09-09 21:41:43 · 1826 阅读 · 0 评论 -
拜占庭将军问题和 Raft 共识算法讲解
其原理是这样的,假设将军总数是 N,其中正直的将军数量是 S,反叛的将军数量是 T, 那么 N=S+T;为了保证即使反叛的将军都不去投票也能产生最终的结果,那么 S 必须要超过半数,这种情况下,S 都做出相同的选择,依然可以达成共识,即 S>T;如果叛徒给一半支持进攻的将军发送进攻信息,给一半支持撤退的将军发送撤退信息,这种情况要保证也能产生最终的投票结果,则 X > S/2 + T;综合以上关系,可以得到:N = S + TX < S求解以上不等式,可以得到:原创 2023-02-08 10:59:27 · 1203 阅读 · 6 评论 -
AIGC迈向通用人工智能时代
2022年4月,OpenAI 的开创性模型 DALL-E2 登场,只需输入简短的文字,就可以生成全新的图像,树立了图像生成和处理的新标杆。针对你的喜好和习惯,AI会生成娱乐、教育、音乐、新闻甚至是游戏等各种形式的内容,这种跨模态、可随机调用的内容生成方式有望在未来成为常态。,能够有机会站在行业巨人的肩上,了解通用人工智能的发展现状与前景,无疑具备巨大的吸引力。新技术的诞生激活了新的场景,并在各个环节发挥作用,产生了前所未有的新价值。大规模测试后,指标趋于稳定,这是产品和技术持续输出的关键和基础。原创 2023-05-01 17:14:24 · 1227 阅读 · 0 评论
分享