dijkstra算法python

本文介绍了如何用Python实现Dijkstra算法,通过优先队列找到带权重图中从起始节点到其他节点的最短路径,以给定的图为例详细展示了过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dijkstra算法是一种用于寻找带权重图中从一个起始节点到其他节点的最短路径的算法。下面是一个使用Python实现Dijkstra算法的示例代码:

import heapq

def dijkstra(graph, start):

    # 创建一个字典来存储节点到起始节点的最短距离

    distances = {node: float('infinity') for node in graph}

    distances[start] = 0

    # 使用优先队列(最小堆)来选择下一个要探索的节点

    priority_queue = [(0, start)]

    while priority_queue:

        current_distance, current_node = heapq.heappop(priority_queue)

        # 如果当前距离大于节点距离字典中的值,则跳过

        if current_distance > distances[current_node]:

            continue

        # 遍历当前节点的相邻节点

        for neighbor, weight in graph[current_node].items():

            distance = current_distance + weight

            # 如果新的路径比已知的路径更短,则更新距离字典

            if distance < distances[neighbor]:

                distances[neighbor] = distance

                heapq.heappush(priority_queue, (distance, neighbor))

    return distances

# 示例图的字典表示

graph = {

    'A': {'B': 1, 'C': 4},

    'B': {'A': 1, 'C': 2, 'D': 5},

    'C': {'A': 4, 'B': 2, 'D': 1},

    'D': {'B': 5, 'C': 1}

}

start_node = 'A'

shortest_distances = dijkstra(graph, start_node)

for node, distance in shortest_distances.items():

print(f'Shortest distance from {start_node} to {node} is {distance}')

这个代码首先创建了一个距离字典来跟踪从起始节点到各个节点的最短距离,然后使用优先队列(最小堆)来选择下一个要探索的节点。在遍历节点时,它会检查是否存在更短的路径,如果有就更新距离字典。最终,它输出从起始节点到其他节点的最短距离

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南抖北快东卫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值