
人工智能
Sun7_She
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
人工智能——谓词演算及应用
命题逻辑的归结法原创 2014-10-26 15:55:57 · 2695 阅读 · 0 评论 -
CVPR 2019 新文阅读
1 learning a deep convnet for multi-label classification with partial labels 深度学习在单标签分类任务中表现很好,但是日常生活中的图像本质上是多标签的。多标签分类比单标签分类更困难,因为输入图像和输出标签空间都更复杂。与单标签相比,大规模收集干净的多标签注释更难。为了降低标注成本,我们建议训练带有部分标签的模型,即每个图...原创 2019-06-13 23:11:13 · 539 阅读 · 0 评论 -
【深度学习】分类网络结构RESNET RESNEXT DENSENET DPN MOBILE NET SHUFFLE NET
RESNET 跳跃连接 RESNEXT 拆分-转换-合并 增加基数(独立路径的数量)来提高准确度比网络加深或扩大来提高准确度更有效。(为什么呢?) DENSENET 相加改为相并联 加强shortcut,将所有层直接连接在一起 DPN 将残差通道和densely connected path相融合,实现优缺互补 ------------------------...原创 2019-05-24 09:21:23 · 509 阅读 · 0 评论 -
【深度学习】目标检测网络结构RCNN
算法分为4个步骤: 1. 生成1k~2k个候选区域 使用selective search方法,从一张图像生成约2000~3000个候选区域: (1)使用一种过分割手段,将图像分割成小区域 (2)查看现有小区域,合并可能性最高的两个区域,重复直到整张图像合并成一个区域位置 ...原创 2019-05-17 16:06:34 · 600 阅读 · 0 评论 -
【深度学习】目标检测网络结构SSD RETINANET
one stage SSD: SSD是Faster-RCNN和YOLO中做了一次的分类和检测过程放在不同的图像大小上做了多次 RETINANET: RESNET+FPN+FOCAL LOSS原创 2019-05-21 16:37:01 · 670 阅读 · 0 评论 -
【深度学习】目标检测网络结构MASK RCNN FPN
其相对于FASTER RCNN改进如下: 1. 分割,检测,分类同时进行 2. 引入ROI ALIGN(对分类影响不大,对分割影响大,因为ROI POOLING对应回图像中的像素会有偏差,该方法会相对准确)代替faster rcnn中的ROI POOLING ROI ALIGN:https://www.cnblogs.com/wangyong/p/8523814.html 对于检测图片中...原创 2019-05-21 15:55:21 · 1209 阅读 · 0 评论 -
【深度学习】目标检测网络结构SPP FAST-RCNN FASTER-RCNN
在讲fast-rcnn之前,我们先来看一下spp net吧?~ spp net对r-cnn的改进主要有两点: 1. 只对原图提取一次特征。输入是图片,在feature层对应位置找到候选框的位置。 2. 结合空间金字塔方法实现cnns的对不同尺度的输入。实现数据的多尺度输入。分别划分不同的小块对feature进行pooling。 对比r-cnn提速100倍左右...原创 2019-05-19 10:32:07 · 565 阅读 · 0 评论 -
Transfer Learning 文章解析
transfer learning: 包含所有的source or target, labeled or unlabeled, finetune, multi-task learning的情况。总而言之一句话,训练的过程中用(单个数据集做supervised learning)之外的所有情况都算在transfer learning中。 supervised learning: 训练数据都有标签...原创 2018-11-29 10:04:33 · 2131 阅读 · 0 评论 -
【深度学习】训练网络的方法总结
原创 2017-09-26 17:42:51 · 1348 阅读 · 0 评论 -
人工智能知识点记录
1.构成产生式系统的基本元素有(综合数据库) (产生式规则) (控制系统),控制策略按执行规则的方式分类,分为(搜索策略) (冲突消解策略) (正向反向双向推理)三类。 2.归结过程中控制策略的作用是给出控制策略,以使仅对选择合适的子句间方可做归结,避免(多余的、不必要的归结式出现)。常见的控制策略有(推理方向)(求解策略)(限制策略)(冲突消解策略)。 3.公式G和公式S的子句集并不等值,但原创 2014-12-10 15:14:12 · 2797 阅读 · 2 评论 -
人工智能——搜索技术
引言: 什么是搜索: 根据问题的实际情况不断寻找可利用的知识,构造出一条代价较少的推理路线,使问题得到圆满的解决的过程称为搜索。 包括两个方面: ——找到从初始事实到问题最终答案的一条推理路径 ——找到的这条路径在时间和空间上复杂度最小 搜索分两大类: 盲目搜索:也称无信息搜索,即只按预定的控制策略进行搜索,在搜索过程中获得的中间信息不用来改进控制策略。 启发式搜索:在搜索中原创 2014-10-21 15:04:04 · 4339 阅读 · 0 评论 -
人工智能——基础知识
人工智能 人工智能的网站: 加拿大人工智能中心:www.ai.sri.com/aic 乔治大学人工智能中心 www.ai.uga.edu 华声盛顿大学人工智能所 www.cs.washington.edu/research/projects/ai/www 芝加哥大学人工智能实验室 www.cs.uchicago.edu/html/group/ai原创 2014-10-21 14:02:57 · 4944 阅读 · 2 评论 -
人工智能——产生式规则
产生式系统 基本组成:综合数据库(存放知识)、产生式规则(知识)、控制系统(规则的解释或执行程序,即控制策略) 计算机语言使用的BNF范式就是利用产生式规则形式定义的。 产生式最适合表示各种启发式知识,用以说明事物间的经验关联。 产生式系统的特点: 数据驱动:从已知的事实出发 模块化:知识的无序性 控制系统与问题无关 类似人类的认识过程:规则似乎是模拟人类如何解决问题的一个自原创 2014-10-21 14:22:04 · 7540 阅读 · 0 评论 -
人工智能——与或图的搜索
与或图的搜索原创 2014-10-26 14:09:34 · 20266 阅读 · 1 评论 -
人工智能——知识的表示
知识的种类: 事实性知识,过程性知识,原创 2014-10-26 15:57:15 · 2097 阅读 · 0 评论 -
【深度学习】CVPR2019-PAPER IDEAS
1. driving stereo: a large-scale dataset for stereo matching in autonomous driving scenarios 这位朋友的工作主要是在制作深度数据集,制作数据集的过程写了这篇paper。主要是深度标签不好获得,直接用雷达获取的还不够准确,他又结合了其他信息来制作更准确的label~(第一次知道,制作label的方法也可以写...原创 2019-06-24 11:47:08 · 1728 阅读 · 0 评论