生成式模型(Generative Model)是一类能够生成数据样本的模型,通常是通过学习数据的分布或结构来生成新的、类似的数据实例。与判别式模型(Discriminative Model)不同,生成式模型不仅仅关注数据的分类或标签,而是学习数据背后的潜在生成过程,从而能够生成新的样本。
生成式模型的常见应用包括图像生成、文本生成、语音合成等。常见的生成式模型包括:
-
生成对抗网络(GAN, Generative Adversarial Networks):通过两个神经网络(生成器和判别器)对抗训练,生成器生成假数据,判别器判断数据的真假,最终生成器能够生成与真实数据几乎相同的样本。
-
变分自编码器(VAE, Variational Autoencoders):通过编码器将输入数据映射到潜在空间,再通过解码器将潜在空间的表示重构回数据样本,通常用于数据生成和样本重建。
-
马尔可夫链蒙特卡洛(MCMC, Markov Chain Monte Carlo)方法:通过构造马尔可夫链,估算复杂的概率分布,用于从潜在分布中生成样本。
生成式模型的优势在于能够生成多样性高、逼真的数据,这使得它们在创作类任务(如艺术创作、文本自动生成、图像合成等)中具有广泛应用。