Ollama本地部署

一、简介

Ollama 是一个开源的本地大模型部署工具,旨在简化大型语言模型(LLM)的运行和管理。通过简单命令,用户可以在消费级设备上快速启动和运行开源模型(如 Llama、DeepSeek 等),无需复杂配置。它提供 OpenAI 兼容的 API,支持 GPU 加速,并允许自定义模型开发。

二、本地部署

官网地址:Ollama

2.1、windows部署

windows下载后直接安装

2.2、linux 部署

1、Linux因网络原因会安装Ollama失败

# 1、下载ollama_install.sh并保存
curl -fsSL https://ollama.com/install.sh -o ollama_install.sh

# 2、使用github文件加速替换github下载地址 
sed -i 's|https://ollama.com/download/ollama-linux|https://gh.llkk.cc/https://github.com/ollama/ollama/releases/download/v0.5.7/ollama-linux|g' ollama_install.sh

# 3、替换后增加可执行权限
chmod +x ollama_install.sh

# 4、执行sh下载安装
sh ollama_install.sh

2、ollama 提供给外部访问

# 1、修改ollama配置
vi /etc/systemd/system/ollama.service

# 2、增加配置
Environment="OLLAMA_HOST=0.0.0.0:11434"
Environment="OLLAMA_ORIGINS=*

# 3、重启ollama
systemctl restart ollama

postMan访问效果

http://10.11.20.40:11434/v1/chat/completions
http://10.11.20.40:11434/api/chat

#请求
{
    "model": "qwen3:1.7b",
    "messages": [
        {
            "role": "user",
            "content": "hello"
        }
    ],
    "stream": false
}

三、常用命令

命令运行格式:ollama run {model},示例下载模型:
ollama run llama3.2 #或者 ollama run deepseek-r1:7b 

命令

作用描述

ollama serve

启动 Ollama 服务(后台运行)

ollama create

通过 Modelfile 创建自定义模型

ollama run

运行指定模型(如 ollama run llama3 --gpu

ollama list

列出所有已下载模型

ollama ps

查看正在运行的模型

ollama rm

删除指定模型(如 ollama rm llama3

ollama pull

从注册表拉取模型(如 ollama pull deepseek-r1:70b

ollama stop

停止正在运行的模型

ollama show

显示模型详细信息(如 ollama show qwen

ollama help查询帮助命令

四、模型存储路径优化 

默认路径问题

  • WindowsC:\Users\<用户名>\.ollama

  • Linux/macOS~/.ollama

  • 问题:可能占用系统盘空间,尤其对小容量 SSD 用户不友好。

路径迁移方案

Windows
  1. 右键「此电脑」→ 属性 → 高级系统设置 → 环境变量。

  2. 新建系统变量 OLLAMA_MODELS,路径设为 D:\ollama\model

  3. 重启电脑或终端后生效。

Linux/macOS

五、模型管理:从下载到优化

1.、模型下载

  • 官方模型
ollama pull llama3  # 下载 Llama3 模型
  • 自定义模型

  1. 准备模型文件(如 GGUF 格式,从 Hugging Face 下载)。

创建 Modelfile 配置模板(示例):

name: mymodel
template: qwen
path: /path/to/your/model.q4_K_M.gguf

构建模型:

ollama create mymodel -f Modelfile

2. 运行与交互

  • 终端交互

    ollama run --gpu mymodel  # 启动 GPU 加速
    

    输入问题后按 Ctrl+D 提交,等待模型响应。

  • API 调用
    Ollama 内置 OpenAI 兼容 API,通过 http://localhost:11434 访问:

    curl http://localhost:11434/v1/models  # 查看模型列表
    curl -X POST "http://localhost:11434/v1/completions" -H "Content-Type: application/json" -d '{"mod

3. 性能监控与优化

  • 显存不足

    • 选择轻量模型(如 deepseek:1.5b)。

    • 尝试低精度版本(如 q4_K_M 或 q3_K_L)。

  • 内存不足

    • 确保至少 8GB 内存(小模型)或 32GB+(大模型)。

    • 使用 --verbose 参数监控资源消耗:
      ollama run deepseek-r1:70b --verbose
      
      输出示例:
      total duration: 12m1.056s  # 总耗时
      load duration: 1.810s      # 模型加载时间
      eval rate: 2.09 tokens/s   # 生成速度

 六、安全加固指南

1. 限制网络访问

  • 默认风险:Ollama 默认监听 0.0.0.0:11434,可能暴露公网。

  • 解决方案
    # 仅允许本地访问
    export OLLAMA_HOST=127.0.0.1:11434
    # 或通过环境变量设置
    OLLAMA_HOST=127.0.0.1:11434 ollama serve
    

2. 关闭危险端口

  • 若仅本地使用,可通过防火墙屏蔽 11434 端口的外部访问。

3. 定期更新版本

  • Ollama 定期修复安全漏洞,建议升级到最新版:

 七、总结与建议

  • 硬件规划

    • 7B 模型需 8GB 内存,70B 模型需 32GB+。

    • 显存不足时优先选择低精度版本。

  • 安全第一

    • 避免将 Ollama 端口暴露公网,定期更新版本。

  • 模型选择

    • 根据需求选择(如 DeepSeek 适合代码生成,Qwen 适合多语言)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值