代码随想录算法训练营day71 | 53. 寻宝

本次题目来自于卡码网

prim算法

prim算法:不断加入最近节点并更新最近距离,得到最小生成树

if __name__ == '__main__':
    v, e = map(int, input().strip().split())
    # 填一个默认最大值,题目描述val最大为10000
    grid = [[10001] * (v + 1) for _ in range(v + 1)]
    for i in range(e):
        x, y, k = map(int, input().strip().split())
        # 因为是双向图,所以两个方向都要填上
        grid[x][y] = k
        grid[y][x] = k

    # 所有节点到最小生成树的最小距离
    minDist = [10001] * (v + 1)

    # 这个节点是否在树里
    isInTree = [False] * (v + 1)

    # 我们只需要循环 n-1次,建立 n - 1条边,就可以把n个节点的图连在一起
    for i in range(1, v):
        # prim三部曲,第一步:选距离生成树最近节点
        cur = -1  # 选中哪个节点 加入最小生成树
        minVal = float('inf')
        for j in range(1, v + 1):  # 1 - v,顶点编号,这里下标从1开始
            #  选取最小生成树节点的条件:
            #  (1)不在最小生成树里
            #  (2)距离最小生成树最近的节点
            if not isInTree[j] and minDist[j] < minVal:
                minVal = minDist[j]
                cur = j

        # 2、prim三部曲,第二步:最近节点(cur)加入生成树
        isInTree[cur] = True

        # 3、prim三部曲,第三步:更新非生成树节点到生成树的距离(即更新minDist数组)
        # cur节点加入之后, 最小生成树加入了新的节点,那么所有节点到 最小生成树的距离(即minDist数组)需要更新一下
        # 由于cur节点是新加入到最小生成树,那么只需要关心与 cur 相连的 非生成树节点 的距离 是否比 原来 非生成树节点到生成树节点的距离更小了呢
        for j in range(1, v + 1):
            # 更新的条件:
            # (1)节点是 非生成树里的节点
            # (2)与cur相连的某节点的权值 比 该某节点距离最小生成树的距离小
            # 很多录友看到自己 就想不明白什么意思,其实就是 cur 是新加入 最小生成树的节点,那么 所有非生成树的节点距离生成树节点的最近距离 由于 cur的新加入,需要更新一下数据了
            if not isInTree[j] and grid[cur][j] < minDist[j]:
                minDist[j] = grid[cur][j]

    # 统计结果
    result = 0
    for i in range(2, v + 1):  # 不计第一个顶点,因为统计的是边的权值,v个节点有 v-1条边
        result += minDist[i]

    print(result)

kruskal算法

kruskal算法:对所有的边权重排序,按照从低到高;将最小权重的边加入到图中,如果已经在一个集合中了,则舍弃

class UnionFind:
    def __init__(self, n):
        self.n = n
        self.father = [0] * (n + 1)

        for i in range(n + 1):
            self.father[i] = i

    def find(self, u):
        if self.father[u] == u:
            return u
        else:
            self.father[u] = self.find(self.father[u])
            return self.father[u]

    def join(self, u, v):
        u = self.find(u)
        v = self.find(v)
        if u == v:
            return
        self.father[v] = u


if __name__ == '__main__':
    v, e = map(int, input().strip().split())
    edges = []
    result_val = 0
    for _ in range(e):
        v1, v2, val = map(int, input().strip().split())
        edges.append((v1, v2, val))

    # 执行Kruskal算法
    # 按边的权值对边进行从小到大排序
    edges.sort(key=lambda x: x[2])

    # 并查集初始化
    union_find = UnionFind(v)

    # 从头开始遍历边
    for edge in edges:
        # 并查集,搜出两个节点的祖先
        x = union_find.find(edge[0])
        y = union_find.find(edge[1])

        # 如果祖先不同,则不在同一个集合
        if x != y:
            result_val += edge[2]  # 这条边可以作为生成树的边
            union_find.join(x, y)  # 两个节点加入到同一个集合

    print(result_val)

总结

在节点数量固定的情况下,图中的边越少,Kruskal 需要遍历的边也就越少。

而 prim 算法是对节点进行操作的,节点数量越少,prim算法效率就越优。

所以在 稀疏图中,用Kruskal更优。 在稠密图中,用prim算法更优。

复杂度

  • Prim 算法 时间复杂度为 O(n^2),其中 n 为节点数量,它的运行效率和图中边树无关,适用稠密图。
  • Kruskal算法 时间复杂度 为 nlogn,其中n 为边的数量,适用稀疏图
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值