BF16格式数据

BF16是一种相对较新的浮点数格式,又叫BFloat16或Brain Float16。
深度学习中一般不需要FP64,FP32这种高精度的浮点格式。虽然这两种浮点格式数据精度高,但也增加了存储成本和处理过程中的时间成本。如果有一种数据格式能解决FP64,FP32这两种数据格式的这两个缺点,同时又能满足一定的精度要求,那无疑会大大提高深度学习模型的推理速度和部署灵活性。

这种数据格式就是BF16,使用BF16算法的预测精度与FP32相似,但不如FP32精确(谷歌曾说过,这是因为神经网络对指数的大小比尾数敏感得多)。对于大多数应用程序,尤其是计算机视觉和语音方面,这种折衷是可以接受的。

BF16的指数位比FP16多,跟FP32一样,不过小数位比较少。这样设计说明了设计者希望在16bits的空间中,通过降低精度(比FP16的精度还低)的方式,来获得更大的数值空间(Dynamic Range),三种浮点数据格式指标比较如下所示:

在这里插入图片描述

### BF16 和 FP16 的区别 BF16BFloat16)和 FP16(Half Precision Float)都是用于加速数值计算的低精度浮点数格式,但在设计目标和具体实现上存在显著差异。 #### 数据表示 - **FP16** 使用 IEEE 754 标准定义,具有 1 位符号位、5 位指数位以及 10 位尾数位。这种结构使得其动态范围较小,适合于对精度要求较低的应用场景[^3]。 - **BF16** 是一种简化版的 FP32,保留了 8 位指数位而仅使用 7 位尾数位。这样的设计使其拥有与 FP32 类似的动态范围,同时减少了存储需求并提高了运算速度[^4]。 #### 数值稳定性和误差控制 由于 BF16 继承了更多来自 FP32 的特性,在处理较大数值或涉及广泛数量级变化的任务时表现更好。相比之下,尽管 FP16 能够提供更高的密度优化效果,但由于较少的有效数字位数可能导致累积舍入错误增加的情况发生[^5]。 ### 应用场景比较 #### 训练阶段 对于深度学习模型训练而言: - 当采用混合精度策略时,可以考虑将大部分非核心层转换成更低精度形式来提升整体性能的同时维持一定水平上的准确性;此时如果希望进一步增强系统的鲁棒性,则倾向于选用具备更大表达能力的 BF16 来执行主要算子操作[^6]。 ```python import tensorflow as tf optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) with tf.GradientTape() as tape: predictions = model(inputs, training=True) loss = loss_object(labels, predictions) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) ``` 上述代码片段展示了如何通过 TensorFlow 实现自动微分机制下的参数更新过程,其中涉及到梯度计算部分可以根据实际硬件支持情况灵活调整所使用的数据类型,默认情况下会优先尝试利用更高效率的数据格式完成相应工作负载。 #### 推理阶段 推理过程中通常不需要像训练那样频繁地修改权重矩阵等内容物,因此可以在不影响最终输出质量的前提下更加激进地压缩内部状态空间大小: | 特征 | BF16 | FP16 | |------------|-------------------------------|------------------------------| | 动态范围 | ~±3.39×10³⁸ | ~±6.10×10⁴ | | 存储尺寸 | 16 bits | 16 bits | | 主要用途 | 高效AI推断&训练 | 移动端图形渲染/轻量级ML | 从表格可以看出两者各有侧重领域,在选择合适的技术路线之前应当充分评估项目特定约束条件后再做决定[^7]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值