《SLAM十四讲》7.6 三角测量 triangulation.cpp

本文详细解读了三角测量在SLAM中的应用,通过OpenCV的triangulatePoints函数实现3D坐标获取。核心步骤包括利用对极几何求解R和t,将相机外参转化为投影矩阵,以及将像素坐标转换为相机坐标。文中还探讨了像素到相机坐标的转换公式,并强调了数据类型的一致性对函数正确运行的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三角测量是为了解决单目图像无法获取深度的问题,本博客是代码解释所以不解释三角测量的原理。先上全部代码:

#include <iostream>


int main ( int argc, char** argv )
{
   
    if ( argc != 3 )
    {
   
        cout<<"usage: triangulation img1 img2"<<endl;
        return 1;
    }
    //-- 读取图像
    Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );
    Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );

    vector<KeyPoint> keypoints_1, keypoints_2;
    vector<DMatch> matches;
    find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );//这部分完成特征点的提取与匹配
    cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl;

    //-- 估计两张图像间运动,2d-2d函数可以求解R与t
    Mat R,t;
    pose_estimation_2d2d ( keypoints_1, keypoints_2, matches, R, t );

    //-- 三角化
    vector<Point3d> points;//将三角测量之后的3d坐标存储在points中
    triangulation( keypoints_1, keypoints_2, matches, R, t, points );//完成特征点之间的三角测量获取深度
    
    //-- 验证三角化点与特征点的重投影关系
    Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );//内参K
    for ( int i=0; i<matches.size(); i++ )
    {
   
        Point2d pt1_cam = pixel2cam( keypoints_1[ matches[i].queryIdx ].pt, K );
        Point2d pt1_cam_3d(
            points[i].x/points[i].z, //三角化得到的3d坐标除以其深度信息来计算其归一化坐标
            points[i].y/points[i].z 
        );
        
        cout<<"point in the first camera frame: "<<pt1_cam<<endl;
        cout<<"point projected from 3D "<<pt1_cam_3d<<", d="<<points[i].z<<endl;
        
        // 第二个图
        Point2f pt2_cam = pixel2cam( keypoints_2[ matches[i].trainIdx ].pt, K );
        Mat pt2_trans = R*( Mat_<double>(3,1) << points[i].x, points[i]
《视觉SLAM十四》中提到的ORB(Oriented FAST and Rotated BRIEF)是一种高效的特征检测和描述符匹配算法,常用于计算机视觉中的结构光标定、定位以及实时地图构建等场景。 Orb_CV.cpp 是一个典型的使用 ORB 算法的 C++ 示例代码片段,它通常会包含以下几个步骤: 1. **初始化**:首先导入必要的库,如 OpenCV 和它的非深度学习版本。 ```cpp #include <opencv2/features2d.hpp> #include <opencv2/calib3d.hpp> #include <opencv2/highgui.hpp> ``` 2. **图像读取**:加载待处理的图像。 ```cpp cv::Mat img = cv::imread("image.jpg", cv::IMREAD_GRAYSCALE); ``` 3. **ORB 特征检测和描述**:创建 ORB 检测器对象,并提取关键点及其描述符。 ```cpp cv::ORB orb; std::vector<cv::KeyPoint> keypoints; cv::Mat descriptors; orb.detectAndCompute(img, std::noArray(), keypoints, descriptors); ``` 4. **匹配描述符**:如果有多张图片,可以使用BFMatcher 对两个图像的描述符进行匹配。 ```cpp cv::BruteForceMatcher<ORBDesc> bfmatcher; std::vector<std::pair<cv::Point2f, cv::Point2f>> matches; bfmatcher.match(descriptors, otherDescriptors, matches); ``` 5. **结果可视化**:将关键点和匹配显示在原始图像上。 ```cpp cv::drawKeypoints(img, keypoints, img, Scalar(0), cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); cv::imshow("ORB Matches", img); cv::waitKey(); ``` 6. **保存匹配数据**:有时可能会保存这些关键点和匹配信息以便后续处理。 注意,这只是一个简化的示例,实际应用中可能会包括更复杂的数据结构管理和错误检查。完整的 `Orb_CV.cpp` 文件应包含了更多的细节,例如循环处理多帧图像,以及处理匹配的质量筛选等。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值