
指标管理
文章平均质量分 95
数据指标体系管理
@SmartSi
Stay Hungry, Stay Foolish
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
阿里巴巴AIGC技术与数据分析的融合实践
在数字化转型浪潮中,数据分析和商业智能(BI)工具成为企业洞察数据、优化决策的关键,场景化应用也日益广泛。伴随生成式AI发展,新一代BI与大模型深度融合,引领商业智能的新变革。作为连续五年入选Gartner ABI魔力象限的产品,Quick BI在自然语言问数、辅助搭建和洞察等领域进行了探索,并自研了BI领域的大模型。受大数据技术社区DataFun邀请,阿里云智能集团瓴羊高级技术专家——王璟尧分享了Quick BI智能化:AIGC与数据分析的融合实践。转载 2024-10-21 22:35:03 · 262 阅读 · 0 评论 -
指标平台详解(下):第三代指标平台实现了哪些突破?
Aloudata 相信,只有真正实现了指标的管、研、用一体化和自动化生产,才能够让业务实现真正灵活、高效、准确的数据分析,才能将 ETL 工程师从繁重的数仓建模和报表开发工作中解放出来,将精力投放到更加有价值的数据资产管理工作中。转载 2024-10-17 23:03:28 · 196 阅读 · 0 评论 -
指标平台详解(上):为什么有了 BI ,还需要指标平台?
导致指标口径定义分散在不同的开发链路中,而人工 ETL 开发与变更又效率低下。那么是否可以突破这种模式,通过将指标定义与消费进行解耦,进而实现指标的统一管理并提升开发效率呢?答案是肯定的。转载 2024-10-16 22:12:05 · 175 阅读 · 0 评论 -
基于统一语义层构建的智能化数据分析平台
小米公司的业务类型跨度非常大。首先介绍产品部门,最早有手机、电视、路由器等比较核心的业务,和众多生态链产品;后来又有了冰箱、洗衣机、空调等大家电;明年汽车业务即将量产;智能制造等其它业务也越来越重要。销售部门里,中国区是我们的基本盘;海外有印度区、国际部,国际部又有很多细分部门。销售和产品研发部门之外,还有支撑部门,其中包括两个重要的部门:一个是信息部,整个公司里面大部分的业务平台建设都在信息部;一个是互联网部,负责手机上一些大型互联网应用。转载 2024-10-16 21:02:51 · 167 阅读 · 0 评论 -
语义层:2020年不可不知的 BI 趋势
什么是语义层呢?从业务人员的角度,他们需要一层在技术实现层上的业务抽象,一个模型层来统一维护业务的逻辑,业务定义的字段,数据层级,衍生计算等,使得业务人员无需关心底层的技术复杂度和实现。对于企业内的数据消费者来说,不论他/她的数据分析能力如何都需要更容易的发现,理解和利用可信赖的数据,这就是语义层应帮助企业做到的。转载 2024-10-13 21:16:42 · 132 阅读 · 0 评论 -
快手指标中台系列 - 快手指标中台发展史及经验教训
快手指标中台已经发展超过三年时间,经历了从单一指标元数据管理到全公司全业务的统一指标中台的演化过程,在公司得到全面的应用,真正实现了指标的“一处定义,多处使用”转载 2024-10-13 09:36:03 · 371 阅读 · 0 评论 -
网易传媒数据指标体系建设实践
什么是指标体系?为什么建设指标体系?如何使用OSM模型和AARRR模型搭建指标体系?本文将为大家带来网易传媒数据指标体系建设的实践分享。转载 2023-02-15 22:46:12 · 339 阅读 · 0 评论 -
有赞指标库实践
随着数据需求越来越多,数据中台提供的指标也日益丰富。但是各种指标定义混乱,描述不清。同样的指标存在于多张物理表内,造成取数混乱。谁也不知道我们到底有多少个指标,更没有沉淀出指标资产。制作指标需要人工咨询数仓开发,口口相传,没有工具提供支撑。BI 分析师在传统 BI 系统上分析数据,制作图表也仅仅局限在表,字段的层次,而不是维度,指标的层次。转载 2023-02-12 23:43:44 · 234 阅读 · 1 评论