一、什么是智能体?
智能体(Agent)是一个能够感知环境、进行推理、制定计划、做出决策并自主采取行动以实现特定目标的 AI 系统。它以大语言模型为核心,集成 记忆、知识库和工具 等能力为一体,构造了完整的决策能力、执行能力和记忆能力,就像一个有主观能动性的人类一样。
二、区别:
与普通的 AI 大模型不同,智能体能够:
- 感知环境:通过各种输入渠道获取信息(多模态),理解用户需求和环境状态
- 自主规划任务步骤:将复杂任务分解为可执行的子任务,并设计执行顺序
- 主动调用工具完成任务:根据需要选择并使用各种外部工具和 API,扩展自身能力边界
- 进行多步推理:通过思维链(Chain of Thought)逐步分析问题并推导解决方案
- 持续学习和记忆过去的交互:保持上下文连贯性,利用历史交互改进决策
- 根据环境反馈调整行为:根据执行结果动态调整策略,实现闭环优化
三、智能体的分类
1、反应式智能体
这类智能体仅依据当前输入和固定规则做出响应,缺乏记忆和规划能力,类似早期的简单聊天机器人。2023 年市面上的大多数 AI 聊天产品基本属于此类,仅能“有问有答”,无法深入理解任务或持续跟进。
2、有限规划智能体
能够进行有限的多步骤操作,但执行路径通常是预设的或受限的。可以“干点事”,但难以胜任复杂任务。2024 年兴起的许多具备联网搜索、调用知识库或工具能力的 AI 系统(如 ChatGPT + Plugins),多属此类。
3、自主规划智能体(目标导向智能体)
具备自主制定计划和执行任务的能力。能够根据目标自动分解任务、动态选择方法与工具,并持续调整策略直至完成任务。这类智能体是向“智能助理”甚至“数字员工”演进的重要方向。
四、智能体实现关键技术
1、CoT(Chain of Thought)思维链
CoT 思维链是一种让 AI 模拟人类思维过程的技术,能够帮助模型在处理复杂任务时分步骤思考,从而提升推理的准确性和可解释性。它不仅有助于解决复杂问题,还能让 AI 在回答过程中展示其推理逻辑,便于我们理解模型的判断依据并进行优化。
2、实现 CoT 的方法其实并不复杂。常见做法包括:
2.1引导式提示:在 Prompt 中加入类似 “让我们一步步分析这个问题” 的语句,引导模型以逐步推理的方式作答。
2.2示例驱动:通过提供包含思维链的示例问题和答案,帮助模型学习如何构建自己的推理链条。
这种技术的引入,使得智能体不仅“能回答”,更“会思考”,是从简单响应走向自主智能的关键一步。
3、Agent Loop 执行循环
Agent Loop 是智能体最核心的工作机制,指智能体在没有用户输入的情况下,自主重复执行推理和工具调用的过程。
在传统的聊天模型中,每次用户提问后,AI 回复一次就结束了。但在智能体中,AI 回复后可能会继续自主执行后续动作(如调用工具、处理结果、继续推理),形成一个自主执行的循环,直到任务完成(或者超出预设的最大步骤数)。
Java伪代码:
public String execute() {
List<String> results = new ArrayList<>();
while (currentStep < MAX_STEPS && !isFinished) {
currentStep++;
// 这里实现具体的步骤逻辑
String stepResult = executeStep();
results.add("步骤 " + currentStep + ": " + stepResult);
}
if (currentStep >= MAX_STEPS) {
results.add("达到最大步骤数: " + MAX_STEPS);
}
return String.join("\n", results);
}
4、ReAct 模式
ReAct(Reasoning + Acting)是一种结合推理和行动的智能体架构,它模仿人类解决问题时 ”思考 - 行动 - 观察” 的循环,目的是通过交互式决策解决复杂任务,是目前最常用的智能体工作模式之一。
4.1 核心思想:
- 推理(Reason):将原始问题拆分为多步骤任务,明确当前要执行的步骤,比如 “第一步需要打开你要搜索的网站”。
- 行动(Act):调用外部工具执行动作,比如调用搜索引擎、打开浏览器访问网页等。
- 观察(Observe):获取工具返回的结果,反馈给智能体进行下一步决策。比如将打开的网页代码输入给 AI。
- 循环迭代:不断重复上述 3 个过程,直到任务完成或达到终止条件。