张量与第一个计算图

这篇博客介绍了TensorFlow中基本的数据单元——张量,并通过代码展示了如何进行基本操作,如张量相加和矩阵乘法。在创建计算图后,使用Session运行得到结果,加深了对TensorFlow计算流程的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tensorflow里面,基本的数据单元是张量,即多维数组。数据与数据之间用有向边连接,构成了计算图。
来看如下代码:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
a=tf.constant([1.0,2.0])
b=tf.constant([3.0,4.0])
c=a+b
print(c)

输出结果如下

Tensor("add:0", shape=(2,), dtype=float32)

这个输出结果记录了节点c在计算图中的信息。add:0是节点名,其中0代表第0个输出,2代表张量的位数,最后一项是数据类型。
进一步,考虑构造一个线性的神经元并计算结果:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
x=tf.constant([[1.0,2.0]])
w=tf.constant([[3.0],[4.0]])
y=tf.matmul(x,w)
print(y)
with tf.Session() as sess:
    print(sess.run(y))

输出结果如下

Tensor("MatMul:0", shape=(1, 1), dtype=float32)
[[11.]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值