解决tensorpack里的“cannot import name ‘InputDesc‘“.

本文介绍在TensorFlow中如何使用tf.TensorSpec替代已弃用的InputDesc,实现输入占位符的功能。通过具体实例展示了如何在ModelDesc中定义输入规格。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先给出正确的调用:将InputDesc修改为:tf.TensorSpec。

以下是解释,可以选择跳过

今天在学习tensorfPack模块的时候,发现调用到tensorpack库里的InputDesc库的时候,发现这个问题:

from tensorpack.graph_builder.model_desc import ModelDesc, InputDesc

进而找到InputDesc库在代码中的使用如下:

return [InputDesc(tf.float32, (None, None, hp.default.n_mfcc), 'x_mfccs'),
                InputDesc(tf.int32, (None, None,), 'y_ppgs')]
return [InputDesc(tf.float32, (None, n_timesteps, hp.default.n_mfcc), 'x_mfccs'),
                InputDesc(tf.float32, (None, n_timesteps, hp.default.n_fft // 2 + 1), 'y_spec'),
                InputDesc(tf.float32, (None, n_timesteps, hp.default.n_mels), 'y_mel'), ]

从而联想到InputDesc应该是给后面的变量赋值使用类型的,类似于TensorFlow里的tf.placeholder函数,构建一个占位符,但是查看tensorpack.graph_builder.model_desc原函数的时候,并没有发现InputDesc相关的函数,只有ModelDesc函数,上网查找也找不到,下班后也进行了相关的搜索,终于,功夫不负有心人,在万能网github上找到了相关解释:

https://github.com/tensorpack/tensorpack/blob/master/CHANGES.md

这里给出了详细解释:
2019/03/20. The concept of InputDesc was replaced by its equivalent in TF: tf.TensorSpec. This may be a breaking change if you have customized code that relies on internals of InputDesc. To use tf.TensorSpec in your ModelDesc:

def inputs(self):
        return [tf.TensorSpec((None, 28, 28, 1), tf.float32, 'image'),
                tf.TensorSpec((None,), tf.int32, 'label')]

符合“占位符”的理念。
至此大功告成,特记录一下!!!

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值