【数据结构实战C++】5 算法的时间复杂度

本文探讨了算法的时间复杂度,介绍了大O表示法在评估算法效率中的应用,重点关注操作数量的最高次项,以及常见的时间复杂度如线性、平方和对数阶。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【数据结构实战C++】5 算法的时间复杂度

作者 CodeAllen ,转载请注明出处


判断一个算法的效率的时候,操作数量中的常数项和其他次要项常常可以忽略,只需要关注最高阶项就可以得出结论

问题:怎么用符号定性的判断算法的效率?

算法复杂度
-时间复杂度

  • 算法运行后对时间需求量的定性描述
    -空间复杂度
  • 算法运行后对空间需求量的定性描述

大O的表示法
-算法效率严重依赖操作(operation)数量
-操作数量的估算可以作为时间复杂度的估算
-在判断时首先关注操作数量的最高次项

O(5)= O(1)
O(2n + 1)= O(2n)= O(n)
O(n^2 + n + 1)= O(n^2)
O(3n^3 + 1)= O(3n^3)= O(n^3)

常见的时间复杂度
线性时间复杂度:O(n)
在这里插入图片描述

对数阶时间复杂度:O(logn)
这时候对底数就忽略了,不管是及计算次数是一样的

在这里插入图片描述

平方阶时间复杂度:O(n^2)
在这里插入图片描述

几个问题测试
在这里插入图片描述
随着n变打,操作次数变少,n+(n-1) + (n - 2)…,计算就是1/2 n^2 +1/2n ,所以复杂度是O(n^2)

在这里插入图片描述
计算下就是 n(n + 1) ,所以复杂度是O(n^2)

在这里插入图片描述
计算三部分也就是 n + n^2 + n(n + 1)n/2 ==> O(n^3)

小结
时间复杂度是算法运行时对于时间的需求量
大O表示法用于描述算法的时间复杂度
大O表示法只关注操作数量的最高次项
常见的时间复杂度为:线性阶,平方阶,对数阶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CodeAllen嵌入式

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值