这个系列的创作目的是从零开始学习大模型并记录成博客供大家一起交流。以下是初步制定的一个分阶段的学习和写作规划,帮助我逐步掌握大模型的核心知识,并高效输出高质量内容。
整体目标:
- 从0开始学习大模型。
- 提升写作表达水平。
第一阶段:基础知识储备(1-2个月)
目标:掌握深度学习基础、Transformer架构和PyTorch/TensorFlow框架。
学习重点:
- 深度学习基础:
-
- 神经网络基础(前馈网络、反向传播、激活函数)。
- 常见任务(分类、回归、序列建模)与损失函数。
- 学习优化器(SGD、Adam)和正则化(Dropout、BatchNorm)。
- 推荐资源:吴恩达《深度学习专项课程》、CS231n(Stanford)。
- Transformer架构:
-
- 精读《Attention is All You Need》论文,理解自注意力机制、