引言
各位Java开发者们,当人工智能浪潮席卷而来,你是否曾思考,如何在熟悉的Spring生态中,更优雅、更高效地构建AI驱动的应用?今天本篇要介绍的正是这样一个专为AI工程打造的全新框架——Spring AI。它不仅仅是一个库,更是Spring团队将其核心设计哲学——可移植性、模块化和POJO(Plain Old Java Objects)至上——带入人工智能领域的开篇大作。
Spring AI介绍
简单来说,Spring AI 是一个应用框架 (Application Framework),其核心使命是:
将企业数据和 API 与各种人工智能模型无缝连接起来。
在传统的AI应用开发中,你可能需要与不同的AI模型(如大型语言模型LLM、图像识别模型等)进行直接交互,处理各种SDK、API接口的适配,同时还要考虑如何将这些AI能力与企业现有的数据源和业务API进行整合。之前都是官方给出的指导用例大多数都是Js和Python,Java开发者在这块往往繁琐且充满挑战。
Spring AI 正是为了解决这些痛点而生。它旨在提供一套统一的编程模型和抽象层,让Java开发者能够以Spring的方式,轻松地:
- 调用和集成主流AI模型: 不论是OpenAI、Hugging Face 上的各种大模型,还是未来的新兴AI能力,Spring AI 都将提供统一的接口进行调用。
- 构建AI驱动的应用程序: 就像Spring Boot让Web开发变得简单一样,Spring AI的目标是让AI应用开发变得触手可及。
- 重用现有的Java资产: 秉承POJO的设计理念,你可以继续使用你熟悉的Java对象作为AI应用中的核心业务逻辑单元,无需学习复杂的新范式。
快速上手用例
这里以一个简单的代码示例,来快速上手spring AI的使用。
Spring AI 的设计理念就是让AI集成像使用Spring Data JPA一样简单。下面我们以集成一个大型语言模型(LLM,例如OpenAI)为例,展示其核心用法。
1. 添加依赖
添加Maven或Gradle依赖(概念性示例):
首先,你需要在你的 pom.xml
(Maven) 或 build.gradle
(Gradle) 中添加Spring AI的Starter依赖。例如,如果你想使用OpenAI模型:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
<version>最新稳定版</version> </dependency>
// Gradle 示例
implementation 'org.springframework.ai:spring-ai-openai-spring-boot-starter:最新稳定版' // 请替换为实际的最新版本
2. 配置API Key
在 application.properties
或 application.yml
中配置你的AI模型API Key。这是连接到AI服务提供商的凭证。
# application.properties 示例
spring.ai.openai.api-key=sk-YOUR_OPENAI_API_KEY_HERE
# spring.ai.openai.chat.model=gpt-4o-mini # 也可以指定模型
3. 创建一个简单的Spring组件来使用AI
Spring AI 会自动配置 AiClient
(或 ChatClient
),你可以直接注入并使用它来发送提示并获取响应。
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
@Service
public class MyAiService {
private final ChatClient chatClient;
// Spring AI会自动注入ChatClient实例
@Autowired
public MyAiService(ChatClient chatClient) {
this.chatClient = chatClient;
}
/**
* 发送一个提示到AI模型并获取回复
* @param userPrompt 用户的输入提示
* @return AI模型的回复内容
*/
public String getAiResponse(String userPrompt) {
// 使用ChatClient构建请求并获取响应
String aiResponse = chatClient.prompt()
.user(userPrompt) // 设置用户提示
.call() // 发送请求
.content(); // 获取回复内容
return aiResponse;
}
/**
* 更复杂的例子:定义输出格式和函数调用
*/
public String getPoemAbout(String topic) {
// 假设我们想让AI返回关于某个主题的诗歌,并可以指导输出格式
String prompt = "请写一首关于" + topic + "的五言绝句。";
String poem = chatClient.prompt()
.user(prompt)
// .options(ChatOptions.builder().withModel("gpt-4").build()) // 也可以在这里指定模型
.call()
.content();
return poem;
}
// 你可以在你的Controller中调用MyAiService
// @RestController
// public class AiController {
// @Autowired
// private MyAiService aiService;
//
// @GetMapping("/generate")
// public String generate(@RequestParam String prompt) {
// return aiService.getAiResponse(prompt);
// }
// }
}
通过以上简单的几步,你就可以在你的Spring应用中集成AI能力了!ChatClient
提供了简洁流畅的API,让你专注于业务逻辑,而不是底层AI模型的复杂调用细节。
重要性描述
-
- Spring生态的自然延伸:
对于数百万的Java开发者而言,Spring框架早已是他们日常开发的首选。Spring AI 的出现,意味着开发者无需跳出熟悉的Spring世界,就能拥抱AI技术。这极大地降低了学习曲线和转型成本。
- Spring生态的自然延伸:
-
- 可移植性和模块化:
Spring AI 强调可移植性。这意味着你的AI应用可以轻松地从一个AI模型提供商切换到另一个,而无需大幅修改代码(例如,从OpenAI切换到Hugging Face模型,你可能只需要修改依赖和配置,而核心业务代码几乎不变)。同时,其模块化设计使得开发者可以根据需要选择和组合不同的AI功能和组件,避免不必要的依赖和复杂性。
- 可移植性和模块化:
-
- POJO驱动,简化开发:
POJO是Java开发者的基石。Spring AI 坚持这一原则,让开发者能够用最简单、最直观的Java对象来构建AI应用。这使得业务逻辑和AI逻辑的融合更加自然,代码更加清晰易懂,减少了框架带来的额外负担。
- POJO驱动,简化开发:
-
- 连接企业数据的桥梁:
企业数据是AI应用的核心燃料。Spring AI 致力于打通企业内部的各种数据源和API,让AI模型能够更好地理解和利用企业特有的信息,从而构建出更具业务价值的智能应用。
- 连接企业数据的桥梁:
总结
Spring AI 的发布,标志着Spring生态在AI领域迈出了坚实的一步,是Java生态圈迈向智能应用的新起点。它为广大Java开发者提供了一个强大而熟悉的工具,去探索和构建下一代智能应用。无论你是希望在现有企业应用中增加AI能力,还是从零开始构建一个全新的AI产品,Spring AI都将是你值得关注和尝试的新利器。
我们期待看到Spring AI如何赋能广大Java开发者,共同开启人工智能应用开发的新篇章!
参考
Spring官网:https://spring.io/projects/spring-ai
Github:https://github.com/spring-projects/spring-ai