K-fold交叉验证(python版)

本文介绍了如何使用Python中的sklearn库进行k-fold交叉验证,包括其原理和原创版本的实现,旨在帮助理解训练集和验证集的划分方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

k-fold交叉验证

sklearn可以实现训练集交叉验证划分训练集和验证集
这里提供一个原创版本。

class My_cv_iterator(): # 自写交叉验证
    def __init__(self,data,label,cv_num):
        '''
        data :输入特征
        label : 输入标签
        cv_num : k-fold 折数

        return
        返回k-fold的iterator 包括step, traindata, validdata

        e.g
        for step, train, valid in My_cv_iterator()
        '''
        self.data = data
        self.label = label
        self.cv_num = cv_num
        train = np.hstack
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值